2024年6月7日,北卡罗来纳大学教堂山分校Channing J. Der通讯在Science发表题为Defining the KRAS- and ERK-dependent transcriptome in KRAS-mutant cancers的文章,通过定义KRAS突变癌症,特别是胰腺导管腺癌(PDAC)中的KRAS和ERK依赖性转录组,阐明了KRAS促癌的机制。
Channing J. Der等人的论文发现,广泛使用的Hallmark KRAS信号传导基因标记源于细胞系中突变KRAS的异位表达,不能准确捕捉KRAS突变PDAC细胞中的KRAS依赖性转录组。他们通过分析内源性KRAS突变PDAC细胞系中急性KRAS抑制后的转录变化,建立了一种新的KRAS依赖性基因标记。值得注意的是,这一特征与Hallmark KRAS信号传导基因集有很大差异,强调了在更具生理相关性的背景下研究KRAS信号的重要性。值得注意的是,作者证明PDAC中的KRAS依赖性转录组主要由ERK促分裂原活化蛋白激酶(MAPK)级联驱动。这一发现挑战了KRAS利用多种效应通路驱动肿瘤生长的传统观点。因此,KRAS-ERK基因标记准确反映了KRAS-突变PDAC、非小细胞肺癌和结直肠癌肿瘤异种移植物以及患者来源异种移植物模型中的KRAS-ELK抑制作用。
通过整合转录组学、蛋白质组学和磷酸化位点活性数据,作者揭示了ERK调节基因转录的多方面机制。他们确定了关键转录因子、表观遗传学调节因子、激酶、磷酸酶和E3连接酶的ERK依赖性调节,这些因子可以驱动基因和蛋白质活性的广泛次级变化。作者发现ERK抑制后期促进复合体/环体(APC/C)E3连接酶,导致细胞周期调节因子如细胞周期蛋白B1和securin的积累,从而促进有丝分裂进展。此外,该研究表明,KRAS-ERK转录组在细胞周期过程中富集,该特征中的基因对PDAC的生长和存活至关重要。随后,聚焦的CRISPR-Cas9筛选确定了几个ERK依赖性基因,这些基因在ERK抑制下表现出合成致死性,突出了潜在的治疗靶点。
最后,研究人员通过分析接受ERK抑制剂治疗的PDAC患者和接受KRAS抑制剂治疗的KRAS-突变非小细胞肺癌患者的肿瘤活检,验证了他们的KRAS-ERK基因特征的临床相关性。KRAS-ERK信号的富集与肿瘤反应相关,表明其作为KRAS-ELK抑制剂疗效的预测生物标志物的潜力。
总之,这项研究显著提高了我们对异常KRAS信号如何主要通过ERK-MAPK级联驱动癌症生长的理解。KRAS-ERK依赖性基因特征的建立和潜在机制的阐明为KRAS-ELK抑制剂的原发性和获得性耐药性机制提供了有价值的见解,为开发更有效的治疗策略铺平了道路。