《Biomaterials:科学家有望利用“蜘蛛丝”开发出新型抗癌疫苗》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-06-21
  • 为了能够有效对抗癌症,如今越来越多的科学家们都利用疫苗来刺激患者机体的免疫系统,从而有效鉴别并且杀灭肿瘤细胞;然而理想的免疫反应或许总是无法得到保证,为了增强疫苗对机体免疫系统,尤其是T淋巴细胞(专门用来检测癌细胞)的效应,来自日内瓦大学等机构的科学家们通过研究开发出了一种特殊的蜘蛛丝微型胶囊来将疫苗直接运输到免疫细胞的核心,这或许有望帮助研究人员开发出有效抵御感染性疾病等多种疾病的新型疫苗,相关研究刊登于国际杂志Biomaterials上。

    我们机体的免疫系统主要基于两类免疫细胞,即B淋巴细胞和T淋巴细胞,前者能够产生机体所需的抗体来抵御多种疾病;当处于癌症和特定感染性疾病(比如结核病)等情况下,机体的T淋巴细胞就需要被刺激激活,然而其激活机制却要比B淋巴细胞要复杂的多,为了能诱发免疫反应,T淋巴细胞需要利用一种肽类分子,如果这种肽类单独注射的话,在其达到目标之前就会被机体迅速分解。

    研究者Carole Bourquin教授说道,为了能够开发出有效抵御癌症的免疫治疗性药物,产生一种具有明显反应的T淋巴细胞就显得非常有必要了,由于目前的疫苗对T细胞的作用非常有限,因此我们就需要开发出其它疫苗策略来克服这个问题。

    几乎坚不可摧的胶囊

    文章中,研究人员利用了一种合成性的蜘蛛丝生物聚合物,这是一种超轻、具有生物相容性的无毒材料,其对光和热的降解有很强的抵抗力,研究者在实验室中重新制作了这种特殊的丝状物,并将其插入一种具有疫苗特性的肽类中,合成的蛋白质链经过盐析就形成了一种可注射的微粒。这种丝状微粒就能形成一种可运输的胶囊,保护疫苗肽类免于机体的快速降解,同时还能将肽类运输到淋巴结细胞的中心,最终增强T淋巴细胞的免疫反应;这项研究证实了研究人员的技术是有效的,这种新型疫苗策略的有效性非常稳定,而且易于制造并定制。

    建立新型的疫苗模型

    这种合成性的丝状生物聚合物颗粒具有较高的耐热性,能够承受100摄氏度的高温数小时且不会被损坏;从理论上来讲这一过程就会使得疫苗开发的过程并不需要佐剂和冷链运输,尤其适合于发展中国家,因为很多发展中国家最大的困难就是如何有效地保存疫苗;然而研究者面临的另外一个限制就是微型颗粒的大小,从原则上来讲其适合于任何肽类,因此其就需要足够小才能够被整合到丝状蛋白中去,后期研究人员还需要更为深入的研究来观察是否能够在标准疫苗中加入较大尺寸的抗原,特别是针对病毒性疾病。

    当科学模仿自然

    最后研究者Scheibel说道,如今科学家们非常擅长于模仿大自然中的事物,这种方法实际上还有一个名字,那就是“生物灵感”(bioinspiration),蜘蛛丝的特性使其成为了一种非常有趣的产品,这些特性包括:生物相容性、固体、薄、生物可降解性、耐极端条件甚至抗菌等,实际上蜘蛛丝有很多医学应用,比如伤口敷料或缝合线等。

  • 原文来源:https://www.sciencedirect.com/science/article/pii/S0142961218302473?via%3Dihub
相关报告
  • 《Infect & Immun:科学家有望开发出新型疟疾疫苗》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-09
    • 近日,一篇刊登在国际杂志Infection and Immunity上的研究报告中,来自澳大利亚墨尔本沃尔特和伊丽莎-霍尔医学研究所的科学家们通过研究发现,高水平的恶性疟原虫抗体或能帮助巴布亚新几内亚的儿童有效抵御严重的疟疾感染,如果儿童机体中有针对恶性疟原虫特殊短链氨基酸序列的高水平抗体的话,那么其在临床上的发病率或许会明显降低。 这些特殊的氨基酸序列(即抗原)在全球所有的恶性疟原虫中都是相似的,因此这种抗原或能作为后期研究人员开发新型疟疾疫苗的新型靶点。研究者Alyssa Barry表示,缺乏应对疟原虫免疫力的人群或许更易于感染疟疾并出现相应的疾病症状,这些人群通常很容易被鉴别,因为其体内缺少应对疟原虫抗原的特殊抗体。 这些特殊的氨基酸序列(研究人员将其称之为ICAM1结合基序)对于疟原虫发挥毒力非常关键,因为其能够结合人类机体大脑中的小血管,即微血管网络,在这里疟原虫依然能够隐藏起来免于被宿主免疫系统发现,随后其通过阻断血管功能,诱发炎症等方式来引发严重的脑型疟疾,ICAM1结合基序在序列上能发生很轻微的改变,而且依然会紧密结合,同时其还能作为研究人员开发新型疟疾疫苗的靶点。 这项研究中,研究人员测定了机体针对ICAM1结合基序的特殊抗体反应,研究人员从巴布亚新几内亚招募了187名年龄在1-3岁之间的儿童进行研究,一旦测定完毕,研究人员就开始对这些儿童进行为期16个月的追踪来观察随着时间延续这些儿童感染疟疾的发病率。 在接下来的追踪过程中,研究人员指出,针对ICAM1结合基序的特殊抗体反应与患者高密度临床疟疾发病风险降低37%直接相关,在一场感染中,高密度的疟原虫对于感染是否能发生非常重要,但其却并不足以诱发严重疟疾的发生;在跟踪调查过程中,出现严重疟疾感染的儿童常常会表现出机体针对ICAM1结合基序的特殊抗体水平较低的状况。 目前全球每年都有超过2亿人感染疟疾,而且疟疾每年也会导致大约40万人死亡;后期研究中,研究人员还将继续深入研究来开发更多有效预防人类感染疟疾的新型疗法或预防性疫苗。
  • 《接近蜘蛛丝强度的蚕丝》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2017-11-20
    • 众所周知,蜘蛛丝是强度最大的材料之一。但遗憾的是,养蜘蛛来生产蜘蛛丝是非常不切实际的。虽然目前很多研究人员正在研究合成蜘蛛丝,但麻省理工学院和塔夫斯大学的科学家们却采取了另一种方法......他们设计了一种使用蚕丝来制造几乎与蜘蛛丝一样硬的纤维的方法。 这个过程涉及化学溶解蚕茧,但只是溶解到一定程度。蚕茧的分子结构仍然保持不变,而丝纤维分解成微丝状结构,称为微原纤维。麻省理工学院的Markus Buehler教授把这个过程比喻为拆除一栋砖房,但保留了各个砖块。 随后将溶液通过小开口挤出,使这些微原纤维重新组装成单纤维。据报道,这种被称为再生丝纤维(RSF)的材料的硬度是普通蚕丝的两倍。 除了以传统纤维的形式形成纺织品外,还可以将RSF做成网状、管状、卷状和片状等结构。由于蚕丝具有天然的生物相容性,所以这种材料可能应用于医用缝合线或用于新组织生长的支架等领域。 另外,还可以通过涂覆一层碳纳米管来使RSF具有导电性。在这种情况下,可以将其设计成智能织物,例如防褥疮床单,当病人躺在一个位置上太久时,会向护理人员发出警告。 该研究已经发表在期刊Nature Communications上。