《pH对污泥厌氧消化过程中抗生素降解迁移的影响》

  • 来源专题:农业立体污染防治
  • 编译者: 季雪婧
  • 发布时间:2017-11-22
  • 抗生素作为一种新型污染物,可随着城市污水厂中污泥的处理处置单元最终进入环境中,对人类健康造成潜在威胁。以城市污水厂的剩余污泥为研究对象,考察在不同初始pH(pH=5.5、6.5、7.5、8.5、9.5、10.5)条件下,12种抗生素在污泥厌氧消化过程中降解迁移的规律。研究结果显示,pH为7.5时,总抗生素去除率最高,为55.7%;pH为5.5时,总抗生素去除率最低,仅为21.7%。厌氧消化后,抗生素明显由固相向液相迁移,且总抗生素去除率与其固相迁移至液相的抗生素含量显著相关。

相关报告
  • 《我国猪粪厌氧消化去除抗生素抗性基因研究取得进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-07-08
    • 在发展中国家,畜禽养殖业仍广泛和大量地使用抗生素,畜禽排泄物成为环境抗生素抗性基因的重要储存库。抗生素抗性基因能在不同的宿主间水平转移的特征,加剧了其对居民生活健康的威胁。越来越多的证据表明,长期使用粪肥会增加农业土壤抗生素抗性。因此,评估和发展粪肥处理工艺对降低抗生素抗性基因环境传播风险至关重要。 厌氧消化和堆肥是目前用于处理畜禽排泄物的主要技术。其中厌氧消化不仅可以降解有机质、消灭病原微生物,还能产生清洁能源。近年来,畜禽粪污厌氧消化过程抗生素抗性基因的归驱受到越来越多的关注。但是由于这些研究只针对某些少数抗性基因,厌氧消化过程抗性基因消除的要素和机理研究未能获得统一的结论。 在国家自然科学基金和中国科学院知识创新工程等资助下,中国科学院城市环境研究所刘超翔研究团队采用高通量荧光定量PCR全面解析猪粪厌氧消化过程近300种抗性基因的动态变化过程,重点解析了厌氧消化温度和抗生素残留对抗性基因去除的影响。研究同时采用扩增子高通量测序阐明厌氧消化过程微生物群落的变化规律。最后辩证分析了影响抗生素抗性基因去除的关键因素和抗性基因与微生物群落的关联机制。 此项研究结果以Higher Temperatures Do Not Always Achieve Better Antibiotic Resistance Gene Removal in Anaerobic Digestion of Swine Manure 为题发表在国际微生物学期刊applied and Environmental Microbiology上,副研究员黄栩为第一作者和通讯作者,研究员刘超翔为共同通讯作者。
  • 《我国科学家在光催化耦合微生物同步降解抗生素及机理分析方面获进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-02-27
    • 近期,中国科学院科学家团队——城市环境研究所城市污染物转化重点实验室研究人员在光催化耦合微生物同步降解抗生素及机理分析方面取得新进展。在已有研究的基础上,对反应体系进行优化设计,在降低光催化材料投加量的情况下,构建了具有快速、高效降解氧四环素(oxytetracycline,OTC)的耦合体系。相关研究成果以 Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline 为题发表在《水研究》( Water Research )上。    光催化耦合微生物同步降解污染物(Intimate coupling of photocatalysis and biodegradation, ICPB)是近年来新兴的污染物降解技术。它将光催化反应高效快速的特点与微生物降解的优势相结合,为水体中污染物的深度降解提供了解决新思路。在ICPB体系中,光催化材料与微生物同时负载在一个载体上,难降解的化合物首先通过光催化氧化的作用被转化为可生物降解的物质,随后微生物通过代谢作用对其进行进一步降解,通过该过程的循环进行,化合物能被有效降解甚至完全矿化。    然而,传统观念认为光催化氧化会对微生物的生存造成危害,因此,为了保证微生物活性不受到来自光照以及活性基团的影响,光催化反应通常发生在载体表面,微生物代谢则发生在载体内部。这会造成两方面的缺陷:一是,由于载体内部没有充足的光照,使得需要提高光催化材料的负载量来保证光催化反应的效率;二是,忽略了光激发条件下微生物与半导体材料间的电子转移效应,而这一过程被证明是有利于污染物降解和环境修复的。    为此,研究人员通过使用更大孔隙率载体(孔隙率为95%)的方法,在充分发挥光催化氧化作用的基础上,激发了微生物与半导体材料在光照条件下的电子传递作用,不仅实现了对水体中OTC的降解去除,还大大降低了体系中光催化材料的需求量。研究结果表明,在静态体系中,在初始浓度为10 mg/L的情况下,约96%的OTC母体能在2 h内被有效去除;在水力停留时间为4.0 h的动态体系中,能在400 h内保持约94%的去除率。此外,β-载脂蛋白-土霉素(β-apo-oxytetracycline)作为一种微生物降解OTC的主要产物,能在土壤中稳定存在,其半衰期约为270天,而在该体系中能在10 min就被降解,体现了该耦合体系对中介代谢产物也具有较好的去除能力。    该研究获得国家自然科学基金、厦门科技计划及福建省STS项目的资助。