《迄今最高能效量子点太阳能电池面世》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2024-02-06
  • 科技日报北京1月31日电 (记者刘霞)韩国蔚山科学技术院科学家借助新配体交换技术,合成出基于有机阳离子的钙钛矿量子点(PQD),开发出迄今能效最高的量子点太阳能电池。这种新型太阳能电池即使储能两年多,效率仍不变,表现出非凡的稳定性。相关论文发表于最新一期《自然·能源》杂志。

    量子点是半导体纳米晶体,尺寸从几纳米到几十纳米不等。科学家可根据颗粒大小控制其光电性能。PQD具有卓越的光电特性,只需简单喷涂或使用溶剂,无需在衬底上生长,制造过程简单且高效,因此引发极大关注。

    但用量子点制造太阳能电池需要借助一种配体交换技术,以减少量子点之间的距离。配体交换是一种将大分子(如配体受体)结合到量子点表面的过程。在这方面,PQD面临极大挑战,包括在替代过程中,其晶体和表面会出现缺陷等。因此,目前PQD太阳能电池的最高效率为16%。

    在最新研究中,团队采用了基于烷基碘化铵的配体交换策略,用具有良好太阳能利用率的有机PQD替代配体,制造出具有缺陷可控的量子点光活性层。在此基础上开发的量子点太阳能电池能效高达18.1%。美国国家可再生能源实验室认定其为迄今已知能效最高的量子点太阳能电池。即使储能两年多,这种新型电池的性能也保持不变,具有非凡的稳定性。

    研究团队指出,以前对量子点太阳能电池的研究主要采用无机PQD。最新研究解决了与有机PQD相关的问题,未来有望催生更多量子点太阳能电池新产品。

  • 原文来源:http://www.cnenergynews.cn/kejizhuangbei/2024/02/01/detail_20240201146503.html
相关报告
  • 《Science:31.25%效率的钙钛矿/硅双结太阳能电池的界面钝化》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 导读 通过最大化每单位面积产生的电力,可以加快光伏(PV)的部署,因为现在PV系统的成本分布主要由系统平衡组件(如安装系统、布线、人力和逆变器)主导,而不是PV面板的成本。这种系统平衡成本与安装面积大致成比例,并且有利于具有高功率与面板面积比的PV技术。然而,结晶硅(C-Si)太阳能电池的最高功率转换效率(PCE)为26.8%,接近理论极限29.5%。在太阳照射条件下,克服这种PCE限制的唯一经验证方法是将几种互补的光活性材料(即多个结)组合在一个单一器件中(3)。在迄今为止报道的不同类型的多结设计中,c-Si与金属卤化物钙钛矿的组合在串联太阳能电池中一直是研究的焦点,因为它具有高PCE和低制造成本的潜力。 金属卤化物钙钛矿结合了多种关键特性,适用于有效的多结光伏,包括高吸收系数和尖锐的吸收边缘,具有长扩散长度的双极电荷传输,以及可调的组成能隙(Eg)。薄膜钙钛矿太阳能电池可以直接沉积在c-Si电池的正面,以降低热化损失并将可实现的PCE范围扩展到>30%。单片两端串联结构的性能潜力通过报告的在1平方厘米照射面积上高达33.7%的PCE得到了证明。迄今为止报告的大多数高效串联电池使用一个Si晶片,其前表面经过机械或化学抛光,或者具有比钙钛矿层厚度更小的适应性亚微米纹理(通常为500纳米至1毫米)。这种平面或纳米纹理的正面拓扑结构——通常通过蚀刻PV行业中常用的制备成几微米高度的金字塔——使得可以使用标准的溶液在基体上面沉积无针孔的钙钛矿薄膜。然而,这种修改以光学性能为代价,因为串联电池的正面是平坦的,并且当使用亚微米级的Si纹理时,因为非均匀性的溶液处理的使钙钛矿膜平坦化。因此,由于缺乏反弹效应,这些电池设计在串联的正极处呈现了更多的反射损失。总的来说,串联器件的正面具有金字塔纹理可以限制反射损失,因为它可以吸收邻近金字塔反射的光线,而Si晶片两侧都具有纹理则可以提高对红外光的吸收能力。 我们先前报道了一种混合的两步沉积方法,将热蒸发和旋转涂相结合,以使钙钛矿层覆盖在微米级Si金字塔上,从而在后表面和前表面都具有纹理的钙钛矿/c-Si串联电池中进行了覆盖。尽管这些串联电池由于前面的金字塔纹理而具有较高的光电流,但非辐射复合损失相当大。其中一个挑战是迄今为止大多数报告的顶表面钝化方法不能直接适用于微米级纹理,因为它们涉及从液体溶液中沉积纳米级有机层。并且,这些加工路线通常在这种表面纹理上产生非均匀(不完全)的涂层。 成果掠影 鉴于此,洛桑联邦理工学院微电子研究所Xin Yu Chin在之前的工作基础上,利用磷酸化合物在两个不同的角色中来钝化界面缺陷,设计了一种串联器件,将钙钛矿层覆盖在具有微米级金字塔纹理的硅底部电池上,以提高光电流。在处理序列中使用添加剂,调节钙钛矿的结晶过程,并减轻发生在钙钛矿顶部与电子选择性接触(富勒烯C60)之间的复合损失。我们展示了一个有效面积为1.17平方厘米的器件,实现了31.25%的认证功率转换效率。相关研究成果以“Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells”为题,发表在顶级期刊《Science》上。 核心创新点 本文的核心创新点是通过在钙钛矿/C-Si太阳能电池中采用具有微米级纹理的硅片、优化钙钛矿沉积过程并使用磷酸基团进行界面钝化,成功减轻了非辐射复合损失,实现了高达31.25%的电池转换效率。 成果启示 本文确定并减轻了发生在具有微米级纹理的硅片的钙钛矿/c-Si串联电池界面的非辐射复合损失,这是c-Si光伏中使用的工业标准。使用Me-4PACz减少了钙钛矿/HTL界面的电压损失,而在钙钛矿沉积序列中加入FBPAc减少了钙钛矿/C60 ETL界面的电压损失,并导致具有较大结晶领域的更有利的钙钛矿微观结构。通过XPS和SIMS成像,可以看到FBPAc存在于钙钛矿顶部表面,并通过其磷酸基团与钙钛矿中的铅缺陷发生配位作用。总的来说,将具有微米级纹理的c-Si、使用混合的两步法在此纹理上均匀沉积的1毫米厚钙钛矿吸收层以及吸收层两侧的磷酸基团结合起来,以改善界面钝化效果,实现了一个独立认证的31.25% PCE的串联电池。这些结果表明,如何将具有标准工业微米级纹理的c-Si太阳能电池升级,以将其PCE提高到>30%。 原文详情: 原文详情:Xin Yu Chin et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells.Science381,59-63(2023).DOI:10.1126/science.adg0091.
  • 《全球首款:超高效量子点太阳能电池震撼登场!》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2024-02-01
    • 韩国科学家研发出新型钙钛矿量子点太阳能电池 韩国蔚山科学技术院的科学家们利用全新的配体交换技术,成功合成出基于有机阳离子的钙钛矿量子点(PQD)。这种新型太阳能电池不仅效率高,而且极其稳定。在储能两年多的时间里,其效率仍能保持不变,展现出惊人的稳定性。这一研究成果已经发表在最新一期的《自然·能源》杂志上。 量子点是一种半导体纳米晶体,大小在几纳米到几十纳米之间。通过改变颗粒的大小,科学家们可以精确控制其光电性能。这种PQD具有卓越的光电特性,制造过程简单高效,只需简单的喷涂或使用溶剂,无需在衬底上生长。因此,它受到了广泛的关注。 然而,制造量子点太阳能电池需要一种特殊的配体交换技术,以减小量子点之间的距离。配体交换是一种将大分子(如配体受体)结合到量子点表面的过程。对于PQD来说,这个过程充满了挑战,例如在替代过程中,它的晶体和表面可能会出现缺陷。 因此,目前PQD太阳能电池的最高效率仅为16%。 在这项最新的研究中,研究团队采用了一种基于烷基碘化铵的配体交换策略。他们用具有优秀太阳能利用率的有机PQD替代了配体,制造出了缺陷可控的量子点光活性层。在此基础上开发的量子点太阳能电池效率高达18.1%,被美国国家可再生能源实验室认定为迄今已知效率最高的量子点太阳能电池。 即使在储能两年多的时间里,这种新型电池的性能也保持不变,展示了其非凡的稳定性。 研究团队相关负责人表示,以前对量子点太阳能电池的研究主要采用无机PQD。而这次的研究解决了与有机PQD相关的问题,未来有望催生更多量子点太阳能电池的新产品。这无疑为全球的太阳能技术开启了一个全新的篇章,期待这项技术在未来的更多突破和应用。