《石墨烯骨架提升金属锂负极的安全性:低局部电流密度抑制锂枝晶生长》

  • 来源专题:福建物质结构研究所所级服务
  • 编译者: fjirsmyc
  • 发布时间:2016-04-01
  • 金属锂负极在电池的充放电过程中,易生长出树枝状的锂枝晶沉积。锂枝晶一方面会刺穿隔膜,引发电池内部短路,带来极大的安全隐患;另一方面,锂枝晶的生长使得新生长的金属锂不断与电解液接触,消耗电解液和金属锂形成多余的锂盐膜(即固液界面膜),带来不可逆的电池容量损失,大幅降低电池的使用寿命。因此,抑制金属锂枝晶的生长,对于改进金属锂负极的安全性和储能效率至关重要。

    为了抑制金属锂枝晶的生长,清华大学张强教授课题组提出了一种石墨烯纳米结构骨架的金属锂负极结构。该负极结构(1)具有极高的比表面积(1666 m2 g-1),可将充放电过程中微观结构表面实际的电流密度降低到整体电极电流密度的仅仅万分之一,通过这一极低的电流密度,实现了无枝晶的金属锂沉积形貌;(2)具有极高的孔容(1.65 cm3 g-1),从而拥有可达4.0 mAh mg-1的极高的稳定充放电容量,是常见锂离子电池所用石墨负极(0.372 mAh mg-1)的约十倍;(3)具有极高的电导率(435 S cm-1),降低了负极金属锂表面的界面阻抗,提高了电化学性能。此外,该工作中结合使用了新型的双盐电解液,可形成稳定具有弹性的锂盐固液界面膜,实现对金属锂的有效保护,保证了该金属锂负极的充放电循环性能。相关工作发表在3月16日出版的《先进材料》期刊上(Adv. Mater., 2016, DOI: 10.1002/adma.201504117)。

    该工作提出了具有极高比表面积、孔容、电导率的石墨烯骨架负极用于锂硫电池中的金属锂负极,提供了通过极低局部电流密度来抑制金属锂枝晶生长、并提高金属锂负极安全性和循环效率的高效研究思路。这类石墨烯纳米结构骨架有望进一步解决金属锂负极的关键问题,进而在锂硫电池等新型电池中发挥重要作用。

    (来源:MaterialsViewsChina

相关报告
  • 《石墨炔”隔膜,让锂金属电池更安全》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-22
    • 锂离子电池给移动电子设备带来了革命性的变革,并正在交通运输方面取得进展,但是要想进一步改善电池的使用寿命和功率,就需要新技术。其中一种选择是:锂金属电池,它的使用寿命更长,充电速度更快,但这项技术存在问题。锂沉积物(通常被称为锂枝晶)倾向于在阳极上生长,这可能会产生短路,从而导致电池失效、着火或爆 炸。 现在,来自中国科学院化学研究所,中国科学院大学,南开大学,汕头大学和中国高压科学技术高级研究中心的研究人员设计了一种基于碳同素异形体(名为石墨炔)的隔膜,用作锂离子的过滤器,并防止枝晶生长。科研人员将这一科研成果发表在了“Materials Today Energy”杂志上。 锂金属电池在概念上类似于锂离子电池,但依赖于锂金属阳极。在放电过程中,锂金属阳极通过外部电路向阴极提供电子。然而,在充电时,锂金属会沉积在阳极上。正是在这个过程中,不受欢迎的树突才能形成。 这就是隔膜发挥作用的地方。薄的隔膜由超薄(10nm)的石墨制炔成,(石墨炔是由丁二烯键连接的二维单层碳原子六角形),具有一些显著的特性。石墨炔不仅同时具有柔韧性和坚固性,其化学结构形成了一个均匀的多孔网格,只允许一个锂离子通过每个孔。这调节了离子通过薄膜的运动,使得离子的扩散高度均匀。对于电池而言重要的是,该膜的这种特征有效地抑制了锂枝晶的生长。 “抑制锂枝晶可以稳定固体电解质中间相,从而提高装置的寿命和库仑效率,”中国科学院化学研究所的李玉良解释说。“它可以避免树枝状的锂枝晶引发短路,从而提高电池的安全性。” 研究人员认为,石墨炔薄膜可以克服锂和其他碱金属电池长期以来所面临的例如锂枝晶等棘手的问题。 “石墨炔是一种完美的材料,具有超级共轭结构,固有带隙,天然大孔结构和半导体特性,这为解决该领域的重大科学问题提出了巨大的希望。”Li说。 这种二维材料也很简单,并且在正常的实验室条件下易于生产。 “尽管需要更多努力来提高大规模石墨炔膜的质量,但我们认为石墨炔可能会在锂电池的安全性方面带来一些重大突破。”Li说。
  • 《动力电池能量密度要与安全性平衡》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-07-16
    •  5月4日,杭州九堡客运中心门口,一辆正在行驶的面包车发生自燃。5月8日,郑州日产帅客EV在东莞某充电站自燃,致使多车严重损毁。6月5日,一辆江铃易至EX5在湖州长兴某小区发生自燃。6月22日,一辆欧拉iQ在保定市瑞兴路的国家电网充电站内自燃。6月28日,杭州余杭盛奥西溪铭座地下车库发生一起新能源汽车自燃事故……   “5月以来,电动汽车安全事故频发、‘火烧连营’。”原中国北方车辆研究所动力电池实验室主任、中国汽车动力电池产业创新联盟副秘书长王子冬坦言,目前电动汽车自燃事故还不能“归零”,给新能源汽车推广带来巨大的负面影响。   在近日举行的“动力电池安全设计及防护技术线上研讨会”上,王子冬反复强调,对电动汽车安全要有正确认识,在目前电池起火原因尚不明晰的情况下,动力电池能量密度的提升要与安全性寻求平衡优化。   电池自燃的根本原因是内部短路   “‘高温炎热的夏天更容易起火’的说法并不正确。”王子冬指出,从各个月份的电动汽车起火事件分布情况来看,除了12月的数量略少之外,其余各个月份都有超过4起严重起火事故,其中5、6月和11月是两个高峰期,这表明电动汽车起火事故在全气候条件下均易发生。   王子冬认为,电动汽车安全事故主要由动力电池热失控引起,但热失控仅是结果,其原因错综复杂。“现在电动汽车普遍配置了热管理系统,电池不太容易因为单一的热滥用而触发热失控。”他表示,解决电池安全问题,还要从更为复杂的角度对其诱因进行全面分析。   “说起热失控,一般都指向了电芯的热失控。”王子冬强调,这一观点很片面,电芯热失控只是其中的一部分,还有其他原因引起的热失控,比如,电池包内部的低压线束起火,局部高电阻导致高压线路升温、不合理的充电和维护方法等,“在电池包内没有相应的防护措施时,火势难以控制,形成热失控和蔓延,最终导致电芯起火,从而产生电芯热失控的假象。”   “车企在理解热失控时也经常感到困惑,因为当前电池热失控的定义或研究都是以电芯来设计的。”王子冬坦言,以电芯先入为主的思路,不利于实际工作中开展热失控的防护。   厘清电池包的热失控要回归本源,即“热”上。王子冬进一步说明,电池包热源来自多个方面:周围外界物体的热;短路或线路中高温电阻、电芯内阻电流作用产生热;过充或是低电压、大电流产生电化学反应产生热;正负极材料与氧气产生化学反应,以及气体膨胀都会产生热。   在王子冬看来,引发电池自燃的根本原因是内部短路。“加工制备时混入的金属杂质或产生的极片毛刺、电滥用、电解液浸泡不均等引发的局部析锂,都有可能划破电池隔膜,引发微小的内部短路。”王子冬称,这种微小的短路并不易被察觉会在电池内部持续产热,当热量堆积到一定程度就会引发电池热失控,致使电池起火。   电池能量密度与安全性成反比   王子冬进一步表示,近几年电动汽车安全事故呈现出一定趋势。“电动客车起火频次和占比逐年减少,而乘用车起火频次和占比总体上在上升,三元电池的使用是一个原因。”王子冬坦言,盲目追求高能量密度是问题的焦点,如何在高能量密度与提高安全性之间取得平衡,是当前业内亟待解决的一大难题。   各动力电池企业在不遗余力地创新。2019年9月,宁德时代推出了全新的CTP方案,改变了原有的电芯—模组—电池包结构,电芯直接集成到电池包。据了解,北汽EU5成为首款搭载该电池的车型,该电池包体积利用率提高了15%—20%,能量密度进一步提升至200Wh/kg,大幅降低了动力电池的制造成本。特斯拉、蜂巢能源均对CTP技术进行了布局。   比亚迪今年也重磅推出了刀片电池,设计上取消了纵梁、横梁,以电芯作为电池包结构的支撑件,使其体积能量密度从普通电池包的251Wh/L提高至332Wh/L。   “上述新技术没有隔离墙,这就要求电池确保万无一失,但目前还做不到。”王子冬直言,目前还没有真正弄清楚锂电池的着火原因、是什么环节出了问题、什么场景会出问题。“为了降低成本、多带电池,直接取消模组的做法值得商榷,有相当大的风险。”在他看来,理论上,电池能量密度与安全性成反比。动力锂电池成组时最关键、最核心的问题是安全和使用寿命,其影响因素除了电池自身工艺性和产品质量外,充电的安全性和热管理技术也至关重要,如果没有完善这两项技术,电池的安全性和长寿命循环就无法得到保证。   为应对动力电池自燃事故的发生,很多企业都在研究BMS(电池管理系统)。“如果电池受到外部影响,目前的BMS基本能够起到防护作用,但如果是电池内部出现问题,一般的BMS就不太管用了。”王子冬建议,BMS研究的重点应该在电芯的检测和事故前的监控上,BMS不能是“事后诸葛亮”。   电池设计要从整体系统优化   值得注意的是,目前有相当一部分安全事故集中在充电环节。王子冬指出,正常充电过程中引发的电池起火事故正逐年上升,其中有充电设备故障引起的,也有电池过充引发的。实际上,电动汽车在停止状态下也会自燃,这对电池安全管理提出了更高要求,不仅在运行过程中,在断电状态下也要对电池进行有效监管和防护。“断电后的监护,目前还是盲点。”   王子冬进一步表示,随着电动汽车保有量的上升和充电桩建设速度的加快,对充电方法和充电设施进行更加规范化的管理,对充电电池组进行有效的状态检测,十分重要。   目前,行业正致力于大功率直流快充的技术攻坚。王子冬提醒,快充对动力电池的要求很高,与之相伴的是,如何减小电池组在快充过程中单体电池之间的差异问题。“要实现快充,就必须在其它方面做出牺牲。”王子冬解释,快充会在锂离子电池内部产生大量热量,过高的温度会破坏负极材料的粘接性能,从而导致负极活性物质的脱离,使电池可逆容量快速衰降、电池性能劣化,严重影响动力电池的使用寿命。   王子冬表示,行业已经在减小电池级片的厚度、改变电池结构,以及选择更合适快充的材料等方面进行调整。不过,这些都将增加动力电池的生产成本,电池设计需从整体角度进行系统优化。