《黑磷:Ag纳米团簇表面功能化诱导的二维黑磷近红外吸收异常(matter . 43/2018)》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-10-24
  • 在第1801931号文章中,王锦兰、陈伟和他的同事开发了一种新的策略,通过银纳米团簇功能化来提高二维黑磷的近红外吸收和光电子性能。结果表明,Ag-P杂交激发了局域隙态,从而激活了近红外区新的光跃迁路径。

    ——文章发布于2018年10月22日

相关报告
  • 《清华大学曹化强《自然·通讯》:在黑磷烯纳米带研究方面取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-08-18
    • 8月6日,清华大学化学系曹化强教授课题组及其合作者在《自然·通讯》(Nature Communications)在线发表了题为“将块体黑磷以‘拉开拉链’方式制备成锯齿取向黑磷烯纳米带”(Unzipping of black phosphorus to form zigzag-phosphorene nanobelts)的研究论文。研究团队利用电化学手段控制氧分子浓度,制备出沿锯齿型(zigzag)取向的纳米带;同时,通过调节电流密度可实现黑磷烯纳米片、纳米带和量子点的可控制备;通过理论计算揭示了氧分子对黑磷烯实现定向切割的机理;利用所制备的黑磷烯纳米带构建场效应晶体管器件并对其载流子输运特性进行了深入研究。 黑磷烯二维纳米结构,包括单原子层黑磷烯和少层黑磷烯(<10层)。与石墨烯不同,黑磷烯本身具有带隙以及独特的各向异性。理论计算预测,黑磷烯在zigzag方向具有比摇椅型(armchair)方向具有更加优异的热学、力学以及半导体性质,因此zigzag取向黑磷烯纳米带在热电、柔性电子和量子信息技术等领域的应用引起了研究者的广泛兴趣。然而,受限于黑磷烯的稳定性以及现有的合成技术,黑磷烯纳米带有效制备成为其研究及应用的关键瓶颈。 受启发于黑磷在空气环境中可被氧化分解,团队设计了一种通过电化学方法,通过改变电流密度有效调节离子插层速率和黑磷烯周边的氧分子浓度,从而可控制备黑磷烯纳米结构的维度和尺寸,获得一系列黑磷烯纳米结构,包括纳米片、纳米带和量子点(图1)。结构表征证明了所制备的黑磷烯纳米带具有很好的结晶性和柔韧性。 图1 锯齿取向黑磷烯纳米带(z-PNB)的结构表征 图2 电化学解离黑磷晶体形成锯齿取向黑磷烯纳米带(z-PNB)的机理 该电化学解离机制认为制备过程分为两步,即离子插层和氧驱动解离过程(图2)。在电化学过程中,BF4-离子沿黑磷a轴方向(即[100]方向,沿zigzag方向)插入黑磷晶体层间,同时,氧分子被化学吸附、解离在黑磷表面上形成悬键氧,通过悬键氧与水分子形成氢键及P-O-P水解,导致P-P键断开,沿着zigzag方向以“拉开拉链”的方式持续进行,被解离成纳米带。理论计算分析、比较了各种氧分子在黑磷烯上的吸附和解离路径(图3)。结果表明,形成间隙氧对是解离黑磷晶体P-P键并最终形成zigzag取向黑磷烯纳米带的关键步骤。 图3 氧驱动解离块体黑磷反应机理的理论计算 研究团队采用铜网掩膜法设计制备了基于黑磷烯纳米带的场效应晶体管器件并探究了其载流子输运特性,可实现器件p-n型之间的转化,为黑磷烯纳米带在主动式矩阵显示技术、射频器件及互补型金属氧化物半导体器件技术中的应用提供了关键材料和开辟新的研究方向。 图4 黑磷烯纳米带(z-PNB)的电子性能 清华大学化学系教授曹化强、清华大学微纳电子系副研究员谢丹和英国剑桥大学材料科学与冶金系教授Anthony K. Cheetham为本文共同通讯作者,化学系博士生刘志方、微纳电子系博士生孙翊淋为共同第一作者。南开大学材料科学与工程学院、稀土与无机功能材料研究中心李伟教授,中国科学院高能物理研究所王嘉鸥副研究员参与了该项研究。本工作获得了国家重点研发计划和国家自然科学基金的支持。
  • 《苏州纳米所:硅等介质基底上生长高结晶性黑磷薄膜的方法》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-03-20
    • 中国科学院苏州纳米技术与纳米仿生研究所研究员张凯与湖南大学教授潘安练、深圳大学教授张晗合作,在《自然-通讯》(Nature Communications)上发表题为Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon 的研究论文,报道了一种在硅等介质基底上生长高结晶性黑磷薄膜的方法。 黑磷是一种具有高载流子迁移率、0.3~1.5 eV随厚度可调直接带隙以及各向异性等优异性质的二维层状半导体材料,在新型电子和光电子器件等领域,如高迁移率场效应晶体管、室温宽波段红外探测器及多光谱高分辨成像等方面具有独特的应用优势,受到广泛关注。然而,黑磷的大规模应用开发迄今仍受限于大面积、高质量薄膜的制备。传统上,黑磷可以通过高温高压、汞催化或从铋溶液中重结晶等方法来制备。通过矿化剂辅助气相输运法(CVT)则可进一步提高其产率和结晶度。但是,这些方法仅可获得黑磷晶体块材,很难直接在衬底上生长黑磷薄膜。最近,也有研究人员通过脉冲激光沉积或借鉴高温高压法尝试在介质衬底上直接生长黑磷薄膜。然而,获得的薄膜多为非晶态,晶粒尺寸小、迁移率等电学性能不理想,离实际应用需求相距甚远。尽管很多研究都做出了巨大努力,包括张凯团队前期在黑磷生长、掺杂、复合所做出的持续性工作尝试(Small 2016, 12, 5000; Adv. Funct. Mater. 27, 1702211, 2017; Nature Commun. 9, 4573, 2018),但如何在基底上实现黑磷成核进而高结晶性薄膜的可控生长依然是一大挑战。 作者在这项工作中,开发了一种新的生长策略,引入缓冲层Au3SnP7作为成核点,诱导黑磷在介质基底上的成核生长。在以往报道的CVT方法中,以Au或AuSn作为前驱体生长黑磷晶体时,Au3SnP7是其中重要的中间产物之一。作者考虑以Au3SnP7来诱导黑磷成核,主要是注意到两点:一是Au3SnP7在黑磷生长过程中可以非常稳定地存在;二是其(010)面的磷原子排布与黑磷(100)面具有匹配的原子结构。基于此,作者通过在衬底上生成Au3SnP7来控制黑磷的成核和生长。其中Au3SnP7的形成是将沉积了Au薄膜的硅衬底与红磷、Sn、SnI4前驱体一起在真空封管中加热获得,其形貌通常为分散在硅衬底上的规则形状晶体,尺寸数百纳米。在随后的保温过程中,发生P4相向黑磷相的转变并在Au3SnP7缓冲层上外延成核。这一假定可以从高分辨截面TEM图像得到印证,可以清晰看到黑磷与Au3SnP7有序共存以及它们之间原子级平滑的界面。随后,在持续的磷源供给及降温过程中,会观察到过渡态黑磷纳米片产物及其在硅衬底上的生长、融合,最终获得表面平整洁净的连续黑磷薄膜。 在生长过程中,P4蒸气的过快输运不利于黑磷薄膜形貌、厚度的控制。为了实现可控的黑磷薄膜生长,作者设计了几种方法来减少参与相变转化的P4源。其一,将红磷置于低温侧,而黑磷薄膜的生长置于远端的高温侧。由此,升华而成的P4分子需经历逆温度梯度的热动力学输运到生长的衬底端,其输运速度及参与反应的量得以有效控制。此外,将多片镀有Au膜的硅衬底叠放,利用衬底之间非常狭小的间隙来限制扩散进入衬底间、在Au3SnP7缓冲层上实际参与生长的P4分子的量。通过这些策略,可以在硅衬底上生长出厚度从几纳米到几百纳米可调的黑磷薄膜。随着厚度的增加,可获得的薄膜尺寸也相应越大。当厚度约为100 nm或以上时,很容易生长出几百微米至亚毫米大小的黑磷薄膜。 所生长的黑磷薄膜具有良好的结晶性及优异的电学性质,室温下的场效应迁移率和霍尔迁移率分别超过1200 cm2V-1s-1和1400 cm2V-1s-1,开关比高达106,与从黑磷晶体中机械剥离的纳米片相当。此外,比较有趣的是,生长的黑磷薄膜还显示出独特的层状微观结构,由几纳米厚(~5-10 nm)的黑磷层作为单元有序堆叠构成,单元之间保持大致等量纳米级的微小间隙。这样特异的微结构,使得生长的黑磷薄膜相比于常规层间致密堆叠结构黑磷薄膜还表现出优异的光学性能,在红外波段具有增强的红外吸收和光致发光等特性。 这项工作为大面积、高质量黑磷薄膜的可控制备提供了新途径,也进一步推进了黑磷在高通量器件集成以及新型光电子器件开发等方面的广泛应用。相关研究成果发表在《自然-通讯》期刊上(Nature Communications,DOI:10.1038/s41467-020-14902-z)。该工作获得国家相关人才计划(61922082)等的经费支持,以及苏州纳米所纳米真空互联实验站(Nano-X)在表征测试上的大力帮助。