现代建筑是一项精密的工作。建筑商必须使用符合特定标准的部件,例如理想组合的横梁或特定尺寸的铆钉。建筑行业依赖制造商来可靠地、可重复地制造这些部件,以建造安全的桥梁和可靠的摩天大楼。
现在想象一个更小的尺度——不到一张纸的百分之一的厚度。这是纳米尺度。科学家们正在努力开发量子计算等领域可能具有突破性的技术。在这种规模下,传统的制造方法根本行不通。我们的标准工具,即使是微型化的,也因为体积太大、腐蚀性太强而无法在纳米尺度上重复制造元件。
华盛顿大学(University of Washington)的研究人员开发了一种方法,可以在纳米尺度上实现可重复制造。该团队采用了一种广泛应用于生物学的基于光的技术——即光学捕集器或光学镊子——在无水、富含碳的有机溶剂的液体环境中工作,从而实现了新的潜在应用。
该团队在10月30日的《自然通讯》杂志上发表的一篇论文中指出,光镊充当了一种以光为基础的“牵引光束”,可以将纳米级半导体材料精确地组装成更大的结构。不像科幻小说中的牵引车光束抓取宇宙飞船,该团队使用光镊捕获比一米还短十亿倍的物质。
“这是一个纳米级制造的新方法,”文章的第二作者彼得Pauzauskie说,华盛顿大学的材料科学和工程学副教授,教员在分子工程与科学学院和研究所纳米工程系统,和在太平洋西北国家实验室的资深科学家。“在制造过程中不涉及腔体表面,这将最小化应变或其他缺陷的形成。所有的组件都悬浮在溶液中,我们可以控制纳米结构的大小和形状,因为它是一块一块组装起来的。”
“使用这种技术在有机溶剂允许我们使用组件,否则降低或腐蚀接触水或空气,”文章的第二作者文森特·霍姆博格说,威斯康辛大学的化学工程助理教授和教员的清洁能源研究所和分子工程与科学学院。“有机溶剂还能帮助我们对正在使用的材料进行过热处理,使我们能够控制材料的转变并推动化学反应。”
为了证明这种方法的潜力,研究人员使用光镊构建了一种新的纳米线异质结构,这是一种由不同材料组成的不同截面组成的纳米线。纳米线异质结构的初始材料是较短的晶体锗“纳米棒”,每个纳米棒只有几百纳米长,直径只有几十纳米——大约是人类头发的5000倍。每个表面都覆盖着金属铋纳米晶体。
然后,研究人员用这种基于光的“牵引光束”抓住其中一个锗纳米棒。来自光束的能量也会使纳米棒过热,熔化铋帽。然后,它们会引导第二个纳米棒进入“牵引光束”——多亏了末端熔化的铋帽——端到端的焊接。然后,研究人员可以重复这个过程,直到他们用重复的半导体-金属接头处组装出一个有图案的纳米线异质结构,这个异质结构的长度是单个构件的5到10倍。
Holmberg说:“我们已经开始把这种面向光学的组装过程称为‘光子纳米氧化’——本质上是用光在纳米尺度上焊接两个组件。”
包含材料间结的纳米线——比如由UW团队合成的锗铋结——可能最终成为为量子计算应用创建拓扑量子位的途径。
牵引光束实际上是一种高度聚焦的激光,它能产生一种光学陷阱,这种获得诺贝尔奖的方法是阿瑟·阿什金在20世纪70年代首创的。迄今为止,光阱几乎只用于水或真空环境。Pauzauskie和Holmberg的团队采用了光学捕获技术,使之能在有机溶剂中更容易挥发的环境中工作。
霍姆伯格说:“在任何环境下都能产生稳定的光阱,这是一个微妙的力量平衡过程。
构成激光束的光子对光阱附近的物体产生一种力。研究人员可以调整激光的特性,使产生的力可以捕获或释放一个物体,可以是单个锗纳米棒,也可以是更长的纳米线。
保佐斯基说:“这是一种可靠的、可再生的纳米制造方法所需要的精确度,它不会与其他表面或材料产生混乱的相互作用,从而导致纳米材料产生缺陷或应变。”
研究人员认为,他们的纳米氧化方法可以使添加剂制造具有不同材料的纳米级结构用于其他应用。
霍姆伯格说:“我们希望这次演示的结果是,不管这些材料是否与水相容,研究人员都能利用光阱来操纵和组装更广泛的纳米材料。”
这篇论文的共同作者是埃琳娜·潘德瑞斯(Elena Pandres),华盛顿大学化学工程专业的研究生,以及马修·克兰(Matthew Crane),华盛顿大学的博士研究生,目前在华盛顿大学化学系担任博士后研究员。合著者是华盛顿大学化学工程名誉教授e·詹姆斯·戴维斯。这项研究是由美国国家科学基金会资助,威斯康辛大学分子工程材料中心,华盛顿大学分子工程与科学研究所,华盛顿大学纳米工程系统研究所,华盛顿大学清洁能源研究所,华盛顿,华盛顿研究基金会和美国空军科学研究办公室。
——文章发布于2019年11月4日