《以光为基础的“牵引光束”在纳米尺度上组装材料》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-11-06
  • 现代建筑是一项精密的工作。建筑商必须使用符合特定标准的部件,例如理想组合的横梁或特定尺寸的铆钉。建筑行业依赖制造商来可靠地、可重复地制造这些部件,以建造安全的桥梁和可靠的摩天大楼。

    现在想象一个更小的尺度——不到一张纸的百分之一的厚度。这是纳米尺度。科学家们正在努力开发量子计算等领域可能具有突破性的技术。在这种规模下,传统的制造方法根本行不通。我们的标准工具,即使是微型化的,也因为体积太大、腐蚀性太强而无法在纳米尺度上重复制造元件。

    华盛顿大学(University of Washington)的研究人员开发了一种方法,可以在纳米尺度上实现可重复制造。该团队采用了一种广泛应用于生物学的基于光的技术——即光学捕集器或光学镊子——在无水、富含碳的有机溶剂的液体环境中工作,从而实现了新的潜在应用。

    该团队在10月30日的《自然通讯》杂志上发表的一篇论文中指出,光镊充当了一种以光为基础的“牵引光束”,可以将纳米级半导体材料精确地组装成更大的结构。不像科幻小说中的牵引车光束抓取宇宙飞船,该团队使用光镊捕获比一米还短十亿倍的物质。

    “这是一个纳米级制造的新方法,”文章的第二作者彼得Pauzauskie说,华盛顿大学的材料科学和工程学副教授,教员在分子工程与科学学院和研究所纳米工程系统,和在太平洋西北国家实验室的资深科学家。“在制造过程中不涉及腔体表面,这将最小化应变或其他缺陷的形成。所有的组件都悬浮在溶液中,我们可以控制纳米结构的大小和形状,因为它是一块一块组装起来的。”

    “使用这种技术在有机溶剂允许我们使用组件,否则降低或腐蚀接触水或空气,”文章的第二作者文森特·霍姆博格说,威斯康辛大学的化学工程助理教授和教员的清洁能源研究所和分子工程与科学学院。“有机溶剂还能帮助我们对正在使用的材料进行过热处理,使我们能够控制材料的转变并推动化学反应。”

    为了证明这种方法的潜力,研究人员使用光镊构建了一种新的纳米线异质结构,这是一种由不同材料组成的不同截面组成的纳米线。纳米线异质结构的初始材料是较短的晶体锗“纳米棒”,每个纳米棒只有几百纳米长,直径只有几十纳米——大约是人类头发的5000倍。每个表面都覆盖着金属铋纳米晶体。

    然后,研究人员用这种基于光的“牵引光束”抓住其中一个锗纳米棒。来自光束的能量也会使纳米棒过热,熔化铋帽。然后,它们会引导第二个纳米棒进入“牵引光束”——多亏了末端熔化的铋帽——端到端的焊接。然后,研究人员可以重复这个过程,直到他们用重复的半导体-金属接头处组装出一个有图案的纳米线异质结构,这个异质结构的长度是单个构件的5到10倍。

    Holmberg说:“我们已经开始把这种面向光学的组装过程称为‘光子纳米氧化’——本质上是用光在纳米尺度上焊接两个组件。”

    包含材料间结的纳米线——比如由UW团队合成的锗铋结——可能最终成为为量子计算应用创建拓扑量子位的途径。

    牵引光束实际上是一种高度聚焦的激光,它能产生一种光学陷阱,这种获得诺贝尔奖的方法是阿瑟·阿什金在20世纪70年代首创的。迄今为止,光阱几乎只用于水或真空环境。Pauzauskie和Holmberg的团队采用了光学捕获技术,使之能在有机溶剂中更容易挥发的环境中工作。

    霍姆伯格说:“在任何环境下都能产生稳定的光阱,这是一个微妙的力量平衡过程。

    构成激光束的光子对光阱附近的物体产生一种力。研究人员可以调整激光的特性,使产生的力可以捕获或释放一个物体,可以是单个锗纳米棒,也可以是更长的纳米线。

    保佐斯基说:“这是一种可靠的、可再生的纳米制造方法所需要的精确度,它不会与其他表面或材料产生混乱的相互作用,从而导致纳米材料产生缺陷或应变。”

    研究人员认为,他们的纳米氧化方法可以使添加剂制造具有不同材料的纳米级结构用于其他应用。

    霍姆伯格说:“我们希望这次演示的结果是,不管这些材料是否与水相容,研究人员都能利用光阱来操纵和组装更广泛的纳米材料。”

    这篇论文的共同作者是埃琳娜·潘德瑞斯(Elena Pandres),华盛顿大学化学工程专业的研究生,以及马修·克兰(Matthew Crane),华盛顿大学的博士研究生,目前在华盛顿大学化学系担任博士后研究员。合著者是华盛顿大学化学工程名誉教授e·詹姆斯·戴维斯。这项研究是由美国国家科学基金会资助,威斯康辛大学分子工程材料中心,华盛顿大学分子工程与科学研究所,华盛顿大学纳米工程系统研究所,华盛顿大学清洁能源研究所,华盛顿,华盛顿研究基金会和美国空军科学研究办公室。

    ——文章发布于2019年11月4日

相关报告
  • 《轻型“牵引梁”以纳米级组装材料》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-11-06
    • 现代建筑是一项精密的工作。建筑商必须使用符合特定标准的部件,例如理想组合的横梁或特定尺寸的铆钉。建筑行业依赖制造商来可靠地、可重复地制造这些部件,以建造安全的桥梁和可靠的摩天大楼。 现在想象一个更小的尺度——不到一张纸的百分之一的厚度。这是纳米尺度。科学家们正在努力开发量子计算等领域可能具有突破性的技术。在这种规模下,传统的制造方法根本行不通。我们的标准工具,即使是微型化的,也因为体积太大、腐蚀性太强而无法在纳米尺度上重复制造元件。 华盛顿大学(University of Washington)的研究人员开发了一种方法,可以在纳米尺度上实现可重复制造。该团队采用了一种广泛应用于生物学的基于光的技术——即光学捕集器或光学镊子——在无水、富含碳的有机溶剂的液体环境中工作,从而实现了新的潜在应用。 该团队在10月30日的《自然通讯》杂志上发表的一篇论文中指出,光镊充当了一种以光为基础的“牵引光束”,可以将纳米级半导体材料精确地组装成更大的结构。不像科幻小说中的牵引车光束抓取宇宙飞船,该团队使用光镊捕获比一米还短十亿倍的物质。 “这是一个纳米级制造的新方法,”文章的第二作者彼得Pauzauskie说,华盛顿大学的材料科学和工程学副教授,教员在分子工程与科学学院和研究所纳米工程系统,和在太平洋西北国家实验室的资深科学家。“在制造过程中不涉及腔体表面,这将最小化应变或其他缺陷的形成。所有的组件都悬浮在溶液中,我们可以控制纳米结构的大小和形状,因为它是一块一块组装起来的。” “使用这种技术在有机溶剂允许我们使用组件,否则降低或腐蚀接触水或空气,”文章的第二作者文森特·霍姆博格说,威斯康辛大学的化学工程助理教授和教员的清洁能源研究所和分子工程与科学学院。“有机溶剂还能帮助我们对正在使用的材料进行过热处理,使我们能够控制材料的转变并推动化学反应。” 为了证明这种方法的潜力,研究人员使用光镊构建了一种新的纳米线异质结构,这是一种由不同材料组成的不同截面组成的纳米线。纳米线异质结构的初始材料是较短的晶体锗“纳米棒”,每个纳米棒只有几百纳米长,直径只有几十纳米——大约是人类头发的5000倍。每个表面都覆盖着金属铋纳米晶体。 然后,研究人员用这种基于光的“牵引光束”抓住其中一个锗纳米棒。来自光束的能量也会使纳米棒过热,熔化铋帽。然后,它们会引导第二个纳米棒进入“牵引光束”——多亏了末端熔化的铋帽——端到端的焊接。然后,研究人员可以重复这个过程,直到他们用重复的半导体-金属接头处组装出一个有图案的纳米线异质结构,这个异质结构的长度是单个构件的5到10倍。 Holmberg说:“我们已经开始把这种面向光学的组装过程称为‘光子纳米氧化’——本质上是用光在纳米尺度上焊接两个组件。” 包含材料间结的纳米线——比如由UW团队合成的锗铋结——可能最终成为为量子计算应用创建拓扑量子位的途径。 牵引光束实际上是高度聚焦的激光,会产生一种光阱,这是亚瑟·阿什金(Arthur Ashkin)在1970年代率先获得诺贝尔奖的方法。迄今为止,光阱几乎仅在基于水或真空的环境中使用。 Pauzauskie和Holmberg的团队改编了光阱技术,以在挥发性更高的有机溶剂环境中工作。 霍尔姆伯格说:“在任何类型的环境中产生稳定的光阱是一种微妙的力量平衡作用,我们很幸运有两个非常有才华的研究生共同致力于这个项目。” 组成激光束的光子在紧靠光阱的物体上产生力。研究人员可以调整激光器的属性,以便产生的力可以捕获或释放物体,无论是单个锗纳米棒还是更长的纳米线。 Pauzauskie说:“这是可靠的,可重复的纳米加工方法所需要的那种精度,而不会与其他表面或材料发生混乱的相互作用,而这种相互作用会给纳米材料带来缺陷或应变。” 研究人员认为,他们的纳米焊接方法可以使具有不同材料集的纳米级结构的增材制造用于其他应用。 霍尔姆伯格说:“我们希望这个示范结果能使研究人员使用光阱来操纵和组装更广泛的纳米级材料,而不论这些材料是否恰好与水相容。” 该论文的共同主要作者是威斯康星大学化学工程专业的研究生Elena Pandres,以及威斯康星大学化学系的博士研究生和现任博士后研究员Matthew Crane。合著者是西澳大学化学工程名誉教授E. James Davis。该研究由美国国家科学基金会,西澳大学分子工程材料中心,西美国大学分子工程与科学研究所,西美国大学纳米工程系统研究所,西美国大学清洁能源研究所,华盛顿州,华盛顿研究基金会资助。空军科学研究所。 ——文章发布于2019年11月4日
  • 《碳纳米管:个性十足的神奇材料》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-07-27
    •   近日,中国科学技术大学化学与材料学院杜平武教授课题组,首次利用纳米管稠环封端“帽子”模板,构建出纵向切割的纳米管弯曲片段。这种通过三个弯曲型分子连接两个石墨烯单元的方法,可直接得到纳米笼状结构,为构建封端锯齿型碳纳米管提供了新思路。相关研究成果发表在最新一期《德国应用化学》上。   无独有偶。几乎在同时,以研制出世界上第一颗原子弹而闻名于世的洛斯阿拉莫斯实验室的研究人员,使用功能化碳纳米管生产出首个能在室温下使用通信波长发射单光子的碳纳米管材料。神奇材料碳纳米管,为何如此受各国科学家追捧?   空间结构像“挖空的足球”   1985年,“足球”结构的C60一经发现即吸引了全世界的目光。将“足球”挖空,保持表面的五角和六角网格结构,再沿着一个方向扩展六角网格,并赋予平面网格以碳—碳原子和共价键,就形成了具有中空圆柱状结构的碳纳米管。   碳纳米管是一种具有特殊结构的一维量子材料。其主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管,层与层之间保持固定的距离,约0.34纳米,直径一般为2—20纳米。   “可以将碳纳米管联想为头发丝,而实际上它的直径只有头发丝的几万分之一,即几万根碳纳米管并排起来才与一根头发丝相当。”杜平武教授告诉科技日报记者,作为典型的一维纳米结构,单层碳原子和多层碳原子网格卷曲而成的单壁与多壁碳纳米管,直径通常为0.8—2纳米和5—20纳米,目前报道的最细碳纳米管直径可小至0.4纳米。   杜平武告诉记者,碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳米管和多壁碳纳米管。若依其结构特征,碳纳米管则可分为扶手椅形纳米管和锯齿形纳米管等几种类型。   制备方法是挑战   “通常的碳纳米管制备方法主要有电弧放电法、激光烧蚀法、化学气相沉积法、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。”杜平武告诉记者,电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现的碳纳米管。“这种方法比较简单,但很难得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层碳纳米管。”   “随后科研人员又发展出了化学气相沉积法,在一定程度上克服了电弧放电法的缺陷,得到的碳纳米管纯度比较高,但管径不整齐,形状不规则。”杜平武说,后续逐步发展起来的固相热解法等,均受限于环境和条件。   “碳纳米管的制备过程与有机合成反应类似,其副反应复杂多样,很难保证同一炉碳纳米管均为扶手椅形纳米管或锯齿形纳米管。”杜平武说,在强酸、超声波作用下,碳纳米管可以先断裂为几段,再在一定纳米尺度催化剂颗粒作用下增殖延伸,而延伸后所得的碳纳米管与模板的卷曲方式相同。   “如果通过类似于DNA扩增的方式对碳纳米管进行增殖,那么只需找到少量的扶手椅形纳米管或锯齿形纳米管,便可在短时间内复制、扩增出数量几百万倍于模板数量的、同类型的碳纳米管。”杜平武说,这可能会成为制备高纯度碳纳米管的新方式。   性能及尺寸超越硅基材料   “碳纳米管具有完美的一维管式结构,碳原子以碳—碳共价键结合,形成自然界中最强的化学键之一,因此轴向具有很高的强度和韧性。此外六角平面蜂窝结构围成的管壁侧面没有悬挂键,所以碳纳米管具有稳定的化学特性。”杜平武说,碳纳米管优异的性能表现在电学、热学和光学等方面,具有超越传统的导电、导热特性等等。   2013年,斯坦福大学科学家制备了由平行排列的单壁碳纳米管为主要元器件的世界上最小“计算机”。近两年,碳纳米管电子器件的性能及尺寸又一次次被突破,势在超越并最终取代目前商用的硅基器件。   碳纳米管还可以制成透明导电的薄膜,用作触摸屏的替代材料。且原料是甲烷、乙烯、乙炔等碳氢气体,不受稀有矿产资源的限制。碳纳米管触摸屏具有柔性、抗干扰、防水、耐敲击与刮擦等特性,可以做成曲面,已在可穿戴装置、智能家具等领域得到应用。   碳纳米管还给物理学家提供了研究毛细现象的最细毛细管,给化学家提供了进行纳米化学反应的最细试管,科学家甚至研制出能称量单个原子的“纳米秤”。“我国在碳纳米管材料的基础研究方面处于领先地位,结构均一性的控制方法和理论不断创新,控制指标也逐年刷新。”杜平武说。