《PNAS刊发中国科学院海洋研究所快速增强台风研究成果》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: 熊萍
  • 发布时间:2025-02-25
  • 近日,中国科学院海洋研究所李晓峰团队在《美国国家科学院院刊》(PNAS,Proceedings of the National Academy of Sciences)发表题为"Advancing Forecasting Capabilities: A Contrastive Learning Model for Forecasting Tropical Cyclone Rapid Intensification"的突破性研究成果。该研究针对全球性的台风快速增强(Rapid Intensification)预报难题,首创基于对比学习(Contrastive Learning)的人工智能模型,相较于传统业务化预报方法,将快速增强事件的预报准确率从50%显著提升至92.3%,提升约2倍;与现有最优深度学习模型相比,误报率由27%大幅降至8.9%,降幅达3倍,为全球台风灾害预警提供了革命性技术方案。

    台风快速增强定义为24小时内最大持续风速增加超过13米/秒,是台风突变致灾的主要原因。然而,由于快速增强事件仅占所有台风事件的5%,且受复杂的物理机制影响,传统的数值和统计模型的预报准确率仅为50%。现有深度学习模型虽将预报准确率提升至82%,但误报率仍高达27%。研究团队针对这一挑战运用对比学习技术突破数据不平衡瓶颈,并融合三维大气海洋环境数据、卫星红外影像及台风历史信息,实现台风空间结构与动力—热力特征的协同解析,从而显著提升预报精度。

    研究团队指出,模型性能的提升主要得益于两大创新。其一,对比学习(如图)有效平衡了样本数量,并精准区分快速增强事件与普通事件的特征差异,从而提高预报稳定性。其二,三维环境数据的融合增强了对台风动力、热力及结构时空关联的捕捉能力,使模型能够更准确地识别快速增强事件。

    此外,研究团队还对误报案例进行了深入分析,发现低强度台风及特定环境条件可能导致误报。未来,结合专家经验辅助修正,有望进一步提升预报精度,为台风灾害预警提供更加精准可靠的技术支持。

    论文第一作者为中国科学院海洋研究所王充助理研究员,通讯作者为李晓峰研究员,合作作者为杨楠助理研究员。该研究获得了国家自然科学基金创新群体项目、国家自然科学基金项目、中国科学院战略先导专项等联合资助。

    论文信息:

    Wang, C., Yang, N., & Li, X. (2025). Advancing forecasting capabilities: A contrastive learning model for forecasting tropical cyclone rapid intensification.?Proceedings of the National Academy of Sciences, 122(4), e2415501122.?https://doi.org/10.1073/pnas.2415501122

  • 原文来源:https://qdio.cas.cn/2019Ver/News/kyjz/202502/t20250219_7529720.html
相关报告
  • 《中国科学院海洋研究所研究揭示新生代喜马拉雅风化长期增强》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-02-02
    • 近日,国际综合性期刊Science Bulletin在线发表了中国科学院海洋研究所、法国巴黎萨克雷大学、法国岩石与地球化学国家研究中心、自然资源部第一海洋研究所等单位合作的最新研究成果“Enhanced weathering input from South Asia to the Indian Ocean since the late Eocene”。研究团队基于印度洋北部浮游有孔虫钕同位素沉积记录,首次提供了晚始新世以来南亚风化长期增强的关键证据,揭示了喜马拉雅构造隆升及硅酸盐风化增强在新生代全球变冷中的重要驱动作用。 新生代地球气候经历了剧烈的变化:以整体变冷和南北两极相继发育大冰盖为基本特征,而大气CO2浓度的逐渐降低被认为是新生代长期变冷趋势的关键因素。但是,其降低的原因是由于构造活动引起的地球内部排气作用所主导,还是青藏高原隆升-风化/有机碳埋藏所驱动,迄今仍然充满争论。这些假说很大程度上基于数值模拟研究,缺乏可靠量化的新生代风化剥蚀记录,尤其缺少强烈影响全球风化通量平衡的喜马拉雅-青藏高原地区的长期风化记录。因此,建立新生代喜马拉雅长时间序列风化通量演变,揭示其与构造-气候变化的联系,是回答新生代气候变冷问题的关键。 恒河–雅鲁藏布江作为全球沉积物输送量最大的河流系统,新生代向孟加拉湾直接输送了来自喜马拉雅和青藏高原东南部的巨量陆源剥蚀物质。因此,研究人员聚焦于拥有独特地理位置的孟加拉湾,利用国际大洋钻探计划(ODP)758站岩芯中的浮游有孔虫放射性Nd同位素记录重建了晚始新世以来印度洋北部海水Nd同位素的长期演变,并将其与印度洋中部海水钕同位素记录进行对比而剔除印度洋水团影响,其二者差值(ΔεNd)的变化趋势被用以指示来自南亚的大陆风化输入对印度洋的贡献。 浮游有孔虫因其碳酸盐壳上的自生铁锰覆层可以吸附海水中的溶解态Nd,其εNd值代表了该区域底层海水的钕同位素组成。众多研究表明大陆边缘的溶解态Nd同位素特征与大陆剥蚀过程密切相关。孟加拉湾海水εNd值分布呈现出明显的南北梯度,这是由于来自喜马拉雅大河流域(如恒河–雅鲁藏布江河流系统)的陆源输入(εNd: -16至-10)与来自南大洋的水团输入(εNd: -9至-7)具有截然不同的Nd同位素特征所造成,表明了印度洋深层水团与南亚大陆风化输入的二端元混合。 基于此,研究人员提出了一个新的风化指标:ΔεNd(印度洋北部与中部海水εNd差值),利用二者εNd值的差异来指示喜马拉雅陆源Nd输入的相对贡献。第四纪记录表明,间冰期期间南亚季风降水的增多导致喜马拉雅区域更强的风化剥蚀,最终向孟加拉湾释放了更多的陆源Nd输入。因此,冰期-间冰期尺度ΔεNd指标的应用可以为构造时间尺度风化输入的解释提供潜在方法。 ODP 758站有孔虫εNd值呈现长期变负的趋势,且其与同岩芯碎屑组分εNd值和粘土矿物比值蒙脱石/(伊利石+绿泥石)显示出截然不同的长期变化,但在21 Ma、8 Ma、6 Ma和3 Ma显示出与陆源通量相同的增长趋势,这表明758站有孔虫Nd同位素组成不受沉积物物源和风化程度变化的影响,而主要反映了南亚陆源风化的长期输入演变。 研究人员将新指标ΔεNd应用在构造时间尺度上,利用ODP 758站有孔虫重建的晚始新世以来印度洋北部海水Nd同位素组成与铁锰结壳重建的印度洋中部海水Nd同位素记录进行对比,二者差值(ΔεNd)的变化趋势可指示来自南亚的大陆风化输入对印度洋的贡献。结果显示ΔεNd呈现长期增长的趋势,显示了晚新生代南亚风化的长期增强。其中,25-13 Ma和5-0 Ma南亚风化输入的快速增强时期分别对应了晚渐新世-中新世喜马拉雅造山带的快速隆起期和早上新世青藏高原东南部增长与北半球冰盖形成时期,这表明了南亚区域构造与风化的耦合演化。现代观测表明,喜马拉雅源-汇系统主要的河流流域硅酸盐风化每年共消耗~1.6×1012 mol的CO2,约占全球河流硅酸盐风化通量的30%。对比发现,在南亚大陆风化增强期间,大气CO2浓度也显示出整体下降的趋势;与此同时,ΔεNd长期增强与全球海水Li和Sr同位素指示的大陆风化趋势相似。这些证据均暗示喜马拉雅构造隆升引起的硅酸盐风化增强对于晚新生代全球变冷有着重要驱动作用。 本研究是迄今北印度洋地区最长且连续的有孔虫Nd同位素记录,对于理解喜马拉雅构造隆升、风化和新生代气候演化具有重要科学意义。 论文的第一作者为中国科学院海洋研究所博士后宋泽华,通讯作者为海洋所万世明研究员和巴黎萨克雷大学Christophe Colin教授。本研究得到了中国大洋发现计划(IODP-China)、国家自然科学基金、国家重点研发计划、泰山和鳌山学者项目等的支持。 论文信息:Song, Z., Wan, S.*, Colin, C.*, France-Lanord, C., Yu, Z., Dapoigny, A., Jin, H., Li, M., Zhang, J., Zhao, D., Shi, X., Li, A., 2023. Enhanced weathering input from South Asia to the Indian Ocean since the late Eocene. Science Bulletin 68, DOI: 10.1016/j.scib.2023.01.015. https://www.sciencedirect.com/science/article/abs/pii/S2095927323000312
  • 《中国科学院海洋研究所研究揭示热带西太平洋岛弧隆升与风化历史》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2025-05-25
    • 近日,国际地学期刊Geophysical Research Letters《地球物理研究通讯》(Nature Index)在线刊发了中国科学院海洋研究所万世明研究团队在晚新生代西太平洋岛弧风化方面的最新研究成果。研究团队与法国巴黎萨克雷大学、同济大学等单位开展合作,基于国际大洋发现计划IODP 368航次在南海北部钻探获取的沉积物岩芯,重建了晚渐新世以来南海北部海水钕(Nd)同位素演化历史。研究发现晚中新世约9百万年前以来热带西太平洋岛弧构造活动引起的火山岩风化显著增强,为晚新生代全球变冷提供了关键的碳汇证据。 在地质时间尺度上,硅酸盐岩化学风化消耗大气CO?,是影响地球长期碳循环和气候演变的主要过程。相较于大陆花岗岩,基性或超基性的岛弧火山岩风化速率高出近一个数量级,因此岛弧风化对全球碳循环可能有重要贡献。然而,在新生代全球气候显著变冷的过程中,岛弧硅酸盐风化的长期演变历史仍不清楚,导致其在新生代变冷中的作用尚不明确。长久以来,传统的沉积矿物或元素指标用于指示风化程度,无法表征风化通量变化,而通量正是衡量风化碳汇效应的关键参数。针对以上问题,研究团队前期工作利用在海水中滞留时间较短的Nd元素,建立了海水Nd同位素追踪风化通量演变的新方法。本研究将该方法应用于南海,以南海北部IODP U1501站位沉积物岩芯为研究材料,通过分析浮游有孔虫壳体的Nd同位素组成,首次重建了约28百万年前以来东亚大陆与热带西太平洋岛弧风化产物输入南海的演变历史。 研究结果表明,自28百万年前以来南海北部U1501站位海水Nd同位素变化幅度达3.6个εNd单位,且呈现明显的阶段性长期变化趋势。通过与南大洋和太平洋水团Nd同位素长期演化记录,以及西太平洋岛弧构造演化历史的综合对比,结果揭示在28~17百万年期间南海北部海水Nd同位素值接近赤道–北太平洋深水水团端元,这和该时期南海处于开放状态、与太平洋深水交换强烈有关。而在17~9百万年期间,受菲律宾群岛向北逆时针旋转及南海东部岩石圈向菲律宾海板块俯冲的影响,吕宋海峡逐渐形成,南海与太平洋深水交换由此受限。与此同时,因青藏高原隆升及东亚夏季风增强驱动,华南大陆向南海的陆源物质输入通量显著增加。因此,该时期逐渐减弱的太平洋水团侵入,叠加增强的东亚大陆陆源物质输入,共同导致研究站位Nd同位素显著负偏。此后,约9百万年前以来,吕宋岛弧与欧亚大陆的弧陆碰撞加剧,导致东南亚岛弧快速隆升与火山岩广泛暴露风化,从而向西太平洋及南海输入更多放射性Nd,最终引起研究站位海水Nd同位素显著正偏。 本研究基于南海过去约28百万年以来的海水Nd同位素记录,提供了晚中新世以来热带西太平洋岛弧隆升-风化增强的关键地质证据,并揭示出岛弧风化不仅对晚新生代全球气候变冷可能有重要贡献,而且其风化产物对大洋海水Nd同位素组成产生了重要影响。 论文第一作者为中国科学院海洋研究所博士李梦君,通讯作者为万世明和于兆杰研究员。本研究得到了国家自然科学基金、国家重点研发计划、中国科学院战略先导科技专项、泰山学者项目的支持。 论文信息:Mengjun Li, ChristopheColin, Shiming Wan*, Zhaojie Yu*, Zhimin Jian, Zehua Song, Arnaud Dapoigny, Hualong Jin, Jin Zhang, Debo Zhao, Anchun Li, 2025. Tectonic Modulated Weathering Inputs from the East Asian Continent and Tropical Island Arc to the South China Sea Since the Late Oligocene. Geophysical Research Letters,52, e2024GL114500. https://doi.org/10.1029/2024GL114500