《国内外浮动式核电站发展现状的研究》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-08-07
  • 浮动式核电站是近年来世界各国为解决能源危机,充分利用核能发电以及海洋开发的一项技术,该技术已日渐成熟,并展现出高效、经济性等特点,被认为是核能开发的一大热点,美、俄、法、韩等国都对浮动式核电站的建设投入了巨大的精力,并规划在未来5年来实现规模化、商业化发展。该文就浮动式核电站的发展史进行了介绍,并就相关技术的应用、在国内外的发展情况和未来的发展前景进行了分析。

    0 前言

    随着人类社会的不断进步,对于能源的需求逐年增加,然而传统的能源获取对于环境的破坏越来越严重,相关资源的储备也日渐枯竭,经济、干净、环保、储量丰富的新能源成为世界各国的开发重点,核能是目前人类最具希望的未来能源之一。核能发电避免了火力发电向大气中排放大量污染物质的情况发生,不会造成空气污染,也不会产生加重地球温室效应的二氧化碳,同时燃料费用占比较低,发电成本较其他发电方法更为稳定,因此成为当前最受欢迎的新能源。在深度挖掘核电利用潜能的过程中,浮动式核电站为核电应用提供了更广阔的空间,并成为当前世界各国争相研究的课题。

    1 浮动式核电站应用分析

    浮动核电站是一种建设在船舶上可以随时移动的核电站,其特点是可以同时满足人们对电、热、淡水和高温蒸汽等多种产品的需求,在区域供电、供热,海上石油开采, 极地或偏远地区等特殊区域的能源供给方面表现出了极强的灵活性,可以有效扩展核电的应用。

    1.1 商业价值

    浮动核电站在研究之初,主要是为了满足经济发展的需求。作为一种比太阳能、生物质能以及风能等清洁能源更具优势的能源,研究人员在探索核电的应用时发现,通过建立浮动核电站,可以将核电用于近海油气勘探平台的能源供应、应对近海人口稠密地区用电高峰期电量供应不足的问题、满足沿海居民的生活用水需求、应对海洋孤岛用电及居民生活用水、为远洋船舶提供大功率推进动力等, 这其中的商业价值不可估量。

    1.2 战略价值

    随着核电利用规模的不断扩展,核能成为新能源中较为重要的战略资源。尤其是在对海洋领域的开发方面,浮动核电站首先可以解决海洋岛屿基础设施建设中必要的电力供应、海水淡化问题 ;其次是可以为推动核动力船舶的研发提供大量的参考数据。未来,随着浮动核电站技术的不断成熟,必将体现出更大的战略价值。

    1.3 安全价值

    一直以来,核电的利用都存在很多争议,那就是核能发电的安全问题。2011 年,日本福岛核电站事故使得各国开始重新评估核能发电的风险,并引发了专业人士关于核电应用的新思考。在广袤无人的大海上建立浮动式核电站, 将核能发电与人类的生活区分开,可以最大限度地降低核泄漏造成的生命财产安全风险。这一思路促使以俄罗斯、美国、法国、韩国、中国为代表的国家致力于研究建造海上浮动式核电站项目。

    2 国外浮动式核电站发展现状分析

    2004 年,国际原子能机构(International Atomic Energy Agency ;IAEA)宣布重新启动“小型反应堆开发计划”[2],浮动式核电站因其采用成熟小型核反应堆技术达到高效、经济的能源供给的优势,成为美国、俄罗斯、韩国等核电强国争相研发的项目,旨在谋求核电能源的多元化应用市场,成为近年来世界核能界的关注热点。目前,国外对于浮动式核电站的研究主要有两个方向,一种以是俄罗斯为代表的典型浮式核电站,另一种是以美国为代表小型海上核电站(OFNP)。同时,法国、韩国在浮动式核电站的研发方面也取得了一定的成绩。

    2.1 俄罗斯典型浮式核电站发展现状

    典型浮式核电站其实可以理解为就是一艘生产核电的船舶,俄罗斯原子能公司制造的“罗蒙诺索夫院士”号是此类浮式核电站的代表。以“罗蒙诺索夫院士”号为例,可以了解典型浮式核电站的特点。该型浮式核电站长144 m、宽 30 m、高 10 m,重 21 500 t,是迄今为止世界上唯一运营的浮动核电站和世界上最北端的核装置,其主要任务是为偏远工业企业、港口城市及海上油气平台提供电力。它拥有典型的船型平台,甲板面积较大、装载能力很强,可以实现各种核电生产设施的布置,同时有充分的空间布局划分各功能舱室。该型浮式核电站上目前装配了两座 35 MW 的改良型 KTL-40 反应堆,可达到 7 万 kW 的年发电量,即可满足 30 万人的生活供电,预计使用寿命 40 年。

    同时,这种船舶式的浮式核电站在机动性方面的表现非常出色虽然自身没有推进系统,但是在牵引船的牵引下,可以较为轻松地转移到任何海上作业区域。由于“罗蒙诺索夫院士”号采用的大型船舶制造技术较为成熟、造价成本较低,体现出了较明显的经济优势,在开发生产运用方面表现突出。

    2.2 美国小型海上核电站(OFNP)发展现状

    美国是最早提出浮动式核电站设想的国家,受 20 世纪70 年代石油危机的影响,曾一度停止过对相关项目的研发建造计划。与俄罗斯的研究开发方向不同,美国对浮式核电站的研究以麻省理工学院设计的小型海上核电站(OFNP) 为主。此类浮式核电站最明显的特征是外型整体结构是直立的多层圆柱形,因此其平台为圆筒形,并设有生活区和直升机停机坪,其余大部分则是在水下由水密舱壁隔开的隔间,可放置 300 MW 或 1,100 MW 机组的核反应堆以及相关的安全系统。

    这种设置方法可以在核反应堆过热时快速引入海水降温,并不断更新提供无限的冷却源,从而增强核电站的安全性。与船型平台相比,圆筒型平台的结松更为简单,面对海洋的风、浪、流可以更好的适应环境,同时这种结构可以实现对来自各个方面压力的平均载荷,降低疲劳载荷,安全性更高。同时,圆筒型平台的重心更低,对于惯性问题的控制能力更强,可以保持整个浮式核电站的稳定性,这一点对于在海上作业的平台来说非常重要。

    另外,圆筒形平台在空间布置方面可以实现各功能舱室围绕反应堆设置,具有更高的空间利用率,预计第一批小型海上核电站 OFNP 可以在 15 年实现部署。

    2.3 法国 Flexblue 下沉式海上浮动核电站发展现状

    Flexblue 下沉式海上浮动核电站是由法国国有船舶制造企业(DCNS)开发的产品,是一种下潜式柱形全模块化移动式浮动式核电站,采用的是小型压水反应堆。此类型浮动式核电站采用舰艇模块化建造技术,核电站在船厂完成建设组装后再被运送到工作场所进行安装。它被安装于距海岸线 5 km~15 km 的海床上,大约在海平面下方 60 m~100 m 处,考虑到地震危害,结合安装场所的地理环境,要么水平固定于海床上,要么正浮悬挂在距离海底几米高的位置,并依靠海底电缆输送电力。Flexblue 下沉式海上浮动核电站的特点是可以在不同的地点同时制造。

    3 国内浮动式核电站发展现状分析

    我国对于浮动式核电站开发研究较美、俄等国略晚。但我国发展浮动式核电站 3 个优势:首先,我国的核电产业正在不断壮大,虽然相比于世界上其他拥有核能发电能力的国家,我国核电发电量占比暂时处于落后局面,但近年来我国的核电总发电量量正在不断上升,且有很大的提升空间。据《2017-2022 年中国核电行业市场前瞻与投资战略规划分析报告》中的内容显示,我国自 2011~2016 年核电的发电量由 872 万 kW 提升到了 2 132 万 kW,核电发电量占我国总发电量的比重从 1.8% 提升到了 3.6%。可见我国在核电开发方面的长足进步和良好发展前景,这为国 内浮动式核电站的研发建设提供了契机。其次,我国对于 清洁能源的需求量正在不断攀升,政府为了促进核电的生 产发展,推出了一系列扶持政策,2016 年 12 月 30 日,国家能源局在其发布的《能源技术创新“十三五”规划》中, 将”建设海洋核动力平台”写入到相关规划中,并提出在 “十三五”期间开展 50-100MW 级海洋核动力平台的研制建造工作,并实现掌握自主知识产权的核心技术以及建立健全相关的标准规范体系。最后,我国的地理环境对浮 动式核电站有一定的需求,我国拥有较长的海岸线,沿海 作业项目较多,对于电力的需求旺盛,因此浮动式核电站 研发成为当前较为重要的课题。中国对于浮动式核电站的 研究目标是在开阔水域建设核电站,为石油钻井平台和沿 海岛屿提供电力,并实现对受灾海岸提供救援的目的。

    2017 年 8 月 10 日,由中国核能电力股份有限公司牵头成立中核海洋核动力发展有限公司正式拉开了对海洋核动力装备开发、建造、运营和管理业务的序幕,并将业务延伸到相关产品如蒸汽、海水淡化等。这一系列举措为浮动式核电站在国内的研究开发奠定了良好的基础。目前, 浮动式核电站的研发方面已取得一定的成绩,如中核集团的 ACP100S 海上浮动堆和中广核集团的 ACPR50S 海洋浮动核动力平台。

    4 结语

    浮动式核电站是在对核能研究开发过程中产生的一种新的核电应用方式,不仅能够解决长期以来人们在核电生产过程中对人类生命财产安全的顾虑,同时能有效解决偏远地区、沿海区域的用电、用水、供热问题,与普通热力发电相比还能起到减少二氧化碳排放作用,对于满足人类能源需求,保护地球环境都具有重要意义。针对海上浮动式核电站的研究开发应用,各国都取得了一定的进展与突破。我国对该项目也进行了系统的规划,计划将来建立一系列小型浮式核电站,用于沿海石油开采以及偏远岛屿的供电供热及海水淡化需求。相信在不久的将来,海上浮动式核电站的前景会更加明朗。

相关报告
  • 《风电制氢技术国内外发展现状及对策建议》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-06-09
    • 风电制氢技术是提高风能的利用率和缓解弃风问题的有效手段。我国风能资源丰富的地区主要分布在“三北”地区、东南沿海等,随着国家大力推广氢能,风电资源丰富却发电受限的地区看到了契机。氢能作为二次能源,它的获取离不开一次能源;氢能产业的发展应当遵循市场规律,由市场主体决定走什么样的技术路线,在市场机制的引导下逐步迈向成熟,最终实现产业的可持续发展。 近年来,风电在我国得到了迅猛发展,我国已成为风电增长最快的国家。根据国家中长期发展规划,到2020年底和2050年底,风电总装机容量将分别超过200GW和1000GW。随着风电装机容量的猛增,越来越多的问题正逐渐显现,如,大规模不可控低品质风电并网对电网安全性带来的挑战;大规模风电场的聚集给当地电网输送带来的极大压力,造成大量弃风现象;大量并网风电给电网调度中心造成越来越大的困难,而且造成电网平衡成本逐渐增大。为解决这些问题,积极探索能源转换方式,将风能转化为氢能源加以利用成为当前研究的重点方向。 一、关于风电制氢技术 风电制氢技术是将风能通过风力发电机转化成电能,电能通过电解水制氢设备转化成氢气,通过将氢气输送至氢气应用终端,完成从风能到氢能的转化。根据风电来源的不同,可以将风电制氢技术分为并网型风电制氢和离网型风电制氢两种。并网型风电制氢是将风电机组接入电网,从电网取电的制氢方式,比如从风场的35kV或220kV电网侧取电,进行电解水制氢,主要应用于大规模风电场的弃风消纳和储能。离网型风电制氢是将单台风机或多台风机所发的电能,不经过电网直接提供给电解水制氢设备进行制氢,主要应用于分布式制氢或局部应用于燃料电池发电供能。 风电制氢技术作为一种新型的储能方式,更多地将被应用于平抑大规模风电场发电的不均衡性,提高风场风电的利用率。 风电制氢技术主要涉及电氢转换和氢气输运两大关键技术,图1是大规模风电场风电制氢技术原理图,整个技术模块包括风力发电机及电网、电解水制氢系统、储氢系统和氢气输运系统。根据风场风电的拓扑结构,按照控制需求可以从35kV或220kV电网处取电,经过AC/DC转化后,进行电解水制氢,所制的氢气先储存在中压储氢罐中,然后,通过20MPa氢气压缩机充灌到氢气管束车,根据用氢需求进行派送,或者可以将中压氢气以不高于体积比10%的浓度掺入到天然气管道中进行输送。 图1 风电制氢技术原理图 二、国际发展现状 (一)欧洲 针对风电的不稳定性及存在的弃风限电等问题,欧洲国家(如丹麦、德国、西班牙等国)的专家们早在五、六年前就开始了相关的研究,重点关注风电结合氢储能系统的技术和成本可行性分析,随后启动了一些示范项目。 在欧盟委员会欧洲研究和创新第七框架计划推动下,启动一项名为INGRID的氢储能项目,该项目总计划投资2390万欧元,其中欧盟资助1380万欧元,由几家企业和研究机构组成的财团,包括意大利的ICT技术公司、Engineering IngegneriaIn for matica、Agenzia per latecnologia e l'Innovazione(ARTI),意大利公用事业部门Enel Distribuzione,比利时氢发电机供应商Hydrogenics,法国的固态氢存储开发商McPhy Energy,以及意大利研究机构Ricercasul Sistema和西班牙研究中心Energetico TECNALIA等自筹1010万欧元。该项目的目的是通过氢储能系统在提升可再生能源系统的利用效率的同时,优化间歇性再生能源电力的发电品质,以保证电网的安全性和稳定性。该项目建设地为意大利的普利亚地区,项目总储存能力为39MWh,由3.5GW的太阳能、风能和生物能资源组成的发电系统,储氢容量超过1吨的固态储氢系统和一套1.2MW的氢发电机组成。 德国制定了宏伟的“Power to gas”发展计划,并逐步实施。Power to gas项目的背景源于德国可再生能源导入量的扩大,德国打算2022年之前全面废除核电,扩大可再生能源的比例。2012年,可再生能源在德国总发电量中所占的比例达到了22%,2020年计划将其提高到35%,2030年进一步提高到50%。基本路线是最终使用多余的风能等可再生能源,电解水生成氢,将制得的氢气储存起来,然后加入至现有的燃气管道网络。氢气作为一种能源载体或原料,用于混氢天然气燃料,或者作为化工原料以及作为氢燃料电池汽车的燃料。 2011年10月,建造于德国柏林普伦茨劳的“风氢混合电站”正式建成启用,它是全球第一个涉及氢气储能和利用的项目。该项目风电装机容量为6MW,电解槽装机容量约0.6MW。随后,德国又启动了两项氢气储能和利用项目,分别位于德国北部的梅克伦堡前波美拉尼亚和东北部勃兰登堡的法尔肯哈根。 (二)美国 美国制定了Wind2H2计划,该计划是由美国能源部国家可再生能源实验中心(NREL)与Xcel能源公司于2004年合作的计划,并交由NREL的国家风能技术中心主持。此计划目的是为协助研究人员掌握可再生能源与电解水制氢之间关键技术,具体内容如下:研究储能技术(以储氢技术为主),再生能源输出及系统成本效益分析;掌握风/氢系统输出最佳容量配比技术(风电、太阳能和氢能系统协调运行策略);不同运行状态分析研究(调节再生能源输出直接上网和电解水所需电量的比例,并进行技术经济分析);电解技术分析(质子交换膜电解槽和碱性电解槽)对风氢系统的影响;推行系统整合、扩大研究规模和领域。现阶段已完成新能源制氢设备的工业规模及社区或个人使用规模设备系统的商业化,并且可直接利用风能进行储能,目的使其在技术和成本上具有优势。 三、我国的发展现状与问题 我国对于发展风电制氢技术也很重视,2014年,李克强总理考察德国氢能混合发电项目,指示国内相关部门组织实施氢能利用示范项目。国家能源局指示河北、吉林省加快可再生能源制氢示范工作,将氢储能作为解决弃风、弃光问题的新思路。 2015年3月,国家电网发布《关于做好2015年度风电并网消纳有关工作的通知》,其中,第五项提出要积极开拓适应风能资源特点的风电消纳市场。为提高本地电网消纳风电的能力,促进风电的就地利用,河北、吉林省要加快推进风电制氢的示范工作,进一步积累经验。 2016年3月,能源部发布《关于做好2016年度风电并网消纳有关工作的通知》,总结现有示范项目经验基础上,开展一批新的风电制氢、风电高载能供电示范项目建设。河北、吉林省要加快推进风电制氢的示范工作。 2016年4月,国家发改委、国家能源局下发了《能源技术革命创新行动计划(2016—2030年)》,也将“氢能与燃料电池技术创新”作为15项重点任务之一。5月19日,中共中央、国务院联合印发了《国家创新驱动发展战略纲要》,其中明确提出:“开发氢能、燃料电池等新一代能源技术”。 但总体上讲,我国风电制氢技术研发起步较晚,进展较为缓慢。目前尚无成熟商业运行的风电制氢储能和燃料电池发电系统,大规模风电制氢储能的示范工程设计经验不足,在系统的关键性技术、效率提升和经济性方面未能取得实质性的进展。面临的问题主要有: (一)关键技术难题 从技术角度来看,风电的随机性、不稳定性、波动性较大,而水电解制氢设备对电能质量的稳定性要求较高,频繁的电力波动会对设备的运行寿命及氢气的纯度质量造成影响。如何进行有效的电能匹配,提高制氢设备的可利用率需要研究探讨。此外,当前氢气的储存和运输成本较高,包括氢气储运的安全性等都是制约氢能行业发展的瓶颈,储运技术需进一步深入研究。 (二)推广应用难题 风电制氢技术的发展有待于氢气下游用户使用问题的解决,当前氢气的大规模使用途径还较为单一,受限于运输和储存成本,用量较大石化企业、合成氨企业多为自行制备,或采用天然气重整、甲醇裂解或煤制氢等方式制取。高纯氢市场用户多,但用量较小,行业发展潜力不大。近年来燃料电池汽车行业技术发展颇受关注,燃料电池汽车行业的规模化发展将会带动氢能规模化利用。 参照德国powertogas计划,将氢气按一定比例加注到天燃气管道中加以利用,也是风电制氢和氢能利用规模化发展的有效途径。如果将风电制取的氢气注入到西气东输的输气管道中,则我国西北部地区的风电弃风难题可有效解决。 四、促进我国风电制氢技术发展的对策建议 (一)关注解决氢能利用途径 制定有关标准和政策,探索将氢气注入到天然气管道中加以利用;促进燃料电池技术行业的发展,燃料电池技术发展将带动氢能的清洁利用,进而推动风电制氢技术的发展。提高油品品质,提高汽柴油标号标准,进而推动油品加氢技术的发展,扩大氢能的利用途径。 (二)加强电解制氢技术的开发 电解制氢技术要想在间歇性电源的储能环节中获得广泛应用,首先必须满足对间歇性电源功率波动的适应性,因此需要深入研究电解制氢装备的功率波动适应性,开发大功率、低成本和高效率工业化碱性电解水制氢技术。同时,开发可快速响应功率波动的固体聚合物电解水制氢技术(SPE)。 (三)开展氢储能系统的研发 由于氢气易于储存,因此有利于提高波动性大的风/光发电品质,并能够参与电网调峰网,可以提高电网安全性和运行效率。因此,如何设计高压储氢系统,使之与电网调峰和运行模式相匹配,是该技术能够走向市场的关键技术之一。 (四)注重大规模风电制氢运行模式以及经济性 一种技术的推广应用,其经济性固然重要,但对于影响面较大的技术而言,单纯考虑经济性是不够的,特别是对社会和环境都会产生影响的技术,应该对其综合效益进行研究和评价,包括社会效益、环境效益及经济效益等。因此,需要在经济性分析的基础上,建立一套多能源转换利用的综合效益评价指标体系和方法,为决策提供支撑。 (五)解决风电与电网输配电的政策问题 参考国家能源局制定的风电供热政策,制定风电制氢相关政策。水电解制氢站是类似于电解铝等的高耗能产业,用电负荷的增加有利于电能的消纳,电网应增加风电的发电上网指标,吸收利用更多清洁电能。出台直供电售电政策,电网公司收取相应过网费后,风电场可直接向制氢站供电,统筹调度风电与太阳能等新能源发电资源,确保水电解制氢供电的稳定性。 本报告为科技创新战略研究专项项目“重点科技领域发展热点跟踪研究”(编号:ZLY2015072)研究成果之一。本报告数据来自同济大学吕洪副教授及中节能风力发电股份有限公司。 本文特约编辑:姜念云(来源:中国科学技术发展战略研究院)
  • 《2017年国内外工业机器人控制器发展现状及品牌分析》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2018-01-04
    • 控制器是工业机器人的三大核心零部件之一,也是工业机器人的大脑,它的好坏直接决定了机器人性能的优劣,因此,不管是ABB、KUKA,还是新松、新时达等国内外各大工业机器人供应商都不约而同地把控制器的主导权掌握在自己手中。 业机器人的发展目标,即开发满足用户需求的工业机器人系统集成技术、主机设计技术及关键零部件制造技术,突破一批核心技术和关键零部件,提升量大面广主流产品的可靠性和稳定性指标,在重要工业制造领域推进工业机器人的规模化示范应用。 作为全球最大的工业机器人市场,中国的工业机器人需求约占全球三分之一左右。在巨大的需求刺激以及国家政策的支持下,中国工业机器人产业也得到了长足的发展,根据相关统计资料显示,2017年1-11月,中国工业机器人累计产量11.817万台,跟去年同比增长68.8%,是增长最快的产品之一。 在此背景之下,工业机器人控制器也实现了爆发式增长。据预测,2017年机器人控制器市场规模达8.78亿元。控制器、软件与本体一样,一般由机器人厂家自主设计研发。目前国外主流机器人厂商的控制器均为在通用的多轴运动控制器平台基础上进行自主研发,各品牌机器人均有自己的控制系统与之匹配。因此,控制器的市场份额基本和机器人保持一致,国内企业控制器尚未形成市场竞争优势。 工业机器人控制器研究现状 随着微电子技术的快速发展,为处理器的性能越来越高,价格越来越便宜。高性价比的微处理器使得开发低成本、高性能的工业机器人控制器成为可能。 为了保证系统具有足够的计算与存储能力,目前工业机器人控制器多采用计算能力较强的ARM系列、DSP系列、POWERPC系列、Intel系列等芯片组成。此外,由于已有的通用芯片在功能和性能上不能完全满足某些工业机器人系统在价格、性能、集成度和接口等方面的要求,这就产生了工业机器人系统对SoC(SystemonChip)技术的需求,将特定的处理器与所需要的接口集成在一起,可简化系统外围电路的设计,缩小系统尺寸,并降低成本。 目前国际上还没有专用于工业机器人系统中的伺服通信总线,在实际应用过程中,通常根据系统需求,把常用的一些总线,如以太网、CAN、1394、SERCOS、USB、RS-485等用于工业机器人系统中。 在控制器体系结构方面,其研究重点是功能划分和功能之间信息交换的规范。在开放式控制器体系结构研究方面,有两种基本结构,一种是基于硬件层次划分的结构,该类型结构比较简单,在日本,体系结构以硬件为基础来划分,如三菱重工株式会社将其生产的PA210可携带式通用智能臂式工业机器人的结构划分为五层结构;另一种是基于功能划分的结构,它将软硬件一同考虑,其是工业机器人控制器体系结构研究和发展的方向。 由于硬件大多都是外购,工业机器人供应商几乎都能买到相同的硬件,而软件往往就成为了工业机器人控制器的核心,大部分工业机器人供应商都有自己独立的开发环境和工业机器人编程语言,很多大学在工业机器人开发环境(RobotDevelopmentEnvironment)方面已有大量研究工作,提供了很多开放源码,可在部分工业机器人硬件结构下进行集成和控制操作,目前已在实验室环境下进行了许多相关实验。 随着工业机器人控制技术的发展,针对结构封闭的工业机器人控制器的缺陷,开发“具有开放式结构的模块化、标准化工业机器人控制器”是当前工业机器人控制器的一个发展方向。 下面我们来看看国内外各大工业机器人控制器品牌的现状。 ABB IRC5控制器是ABB研发的工业机器人控制器,由一个控制模块和一个驱动模块组成,可选增一个过程模块以容纳定制设备和接口,如点焊、弧焊和胶合等。配备这三种模块的灵活型控制器完全有能力控制一台6轴工业机器人外加伺服驱动工件定位器及类似设备。如需增加工业机器人的数量,只需为每台新增工业机器人增装一个驱动模块,还可选择安装一个过程模块,最多可控制四台工业机器人在MultiMove模式下作业。各模块间只需要两根连接电缆,一根为安全信号传输电缆,另一根为以太网连接电缆,供模块间通信使用,模块连接简单易行。 KUKA KRC4是库卡开发的一个全新的、结构清晰且注重使用开放高效数据标准的系统架构,这个系统架构中集成的所有安全控制(SafetyControl)、工业机器人控制(RobotControl)、运动控制(MotionControl)、逻辑控制(LogicControl)及工艺过程控制(ProcessControl)均拥有相同的数据基础和基础设施并可以对其进行智能化使用和分享。使系统具有最高性能、可升级性和灵活性。 KEBA KEBA并不是工业机器人生产商,是工业机器人控制器行业为数不多的非工业机器人生产商,他的产品是工业级伺服控制系统,能够实现多自由度工业机器人的控制,该控制系统中通过VxWorks平台或者Windows+RTX实时扩展平台保证软件运行环境的实时性,通过运动规划和运动控制单元可以实现对总线式伺服驱动器的控制,从而达到对工业机器人的精确控制。KeMotionr5000系列控制器是一套完整的面向多轴运动控制系统软硬件模块化控制器。硬件包括KeMotion控制器,以及各种外围模块组成,它们通过以太网或总线的形式与控制器连接,实现面向各种应用的搭配。控制系统软件的核心部分是运行在控制器硬件平台(x86嵌入式微处理器)上一整套软件。自底向上的看,首先底层的OS是VxWorks实时操作系统,这为系统的实时性和可靠性提供了一个基础,同时也为应用软件提供运行环境。 发那科 FANUCRobotR-30iA是发那科研发的新一代工业机器人控制器,具有性能高,响应快,安全性能强等特点。作为唯一集成了视学功能的工业机器人控制器,将大量节约为实现柔性生产所需的周边设备成本。基于FANUC自身软件平台研发的各种功能强大的点焊、涂胶、搬运等专用软件,在使工业机器人的操作变得更加简单的同时,也使系统具有彻底免疫计算机病毒的功能。 安川 安川开发的是基于PC开发的具有开放式结构、网络功能的工业机器人控制器,2016年,安川还推出了配备人工智能的机器人控制,可自动设定焊接条件,高精度预测机器人主体的寿命等。将为启动作业的效率化、缩短机械障碍时的停止时间做出贡献。控制器内的AI可自行寻找最佳的焊接条件,反映至机器人的实际作业中。通常在焊接多个位置时需要设定不同的条件,新控制器中的设定工作部分实现了自动化。在焊接之外,还考虑在涂装、加工等机械臂前端动作需要进行细微设定的用途领域应用。 新松机器人 新松是中国工业机器人的巨头,其SIASUN-GRC机器人控制器具有自主版权、自主开发的实用化、商品化的机器人控制器,该机器人控制器设计合理、技术先进、性能优越、系统可靠、使用方便。采用交流伺服驱动,绝对码盘检测和大屏幕汉字示教编程盒等多项最新技术,形成了先进的高性能机器人控制系统。该系统的整体性能已达到国际先进水平,是国内第一个可商品化的机器人控制器,具有小批量生产能力。 新时达 凭借着在电气控制领域、伺服器与控制器方面近20年的研发积累,新时达已掌握了机器人及运动控制技术,是国产机器人品牌里自主化率最高的公司之一。据悉,新时达机器人智能系统中的机器人本体、控制器、软件系统、驱动控制系统均为自主研发。 广州数控 在丰富的机床数控技术积累基础上,广州数控掌握了机器人控制器、伺服驱动、伺服电机的完全知识产权,其中GSK-RC是广州数控自主研发生产,具有独立知识产权的机器人控制器。 华中数控 华中数控早在1999年就开发出了华中I型机器人的控制系统,经过近20年的发展,在控制器、伺服驱动器和电机这三大核心部件领域均具备较大的技术优势,CCR系列是华中数控自主要发的机器人控制系统。 固高科技 固高科技从2001年就开始研发四轴机器人控制器,2006年涉足六轴机器人控制器,是国内最早研究机器人控制器的企业之一,截止目前,固高控制系统涵盖了从三轴到八轴各类型号机器人,其中技术难度最大的八轴机器人控制系统已经可以实现批量生产。 汇川技术 汇川技术凭借变频器和伺服起家,从2013年扩展到控制器领域,2014年,汇川技术推出了基于EtherCAT总线的IMC100机器人控制器和IS620N总线型绝对值的机器人专用伺服系统,目前主要针对的市场包括小型六轴、小型SCARA和并联机器人等新兴应用领域。