《欧洲开展耐损伤低成本复合材料的研究项目“DACOMAT”》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-05-04
  • 耐损伤复合材料(DACOMAT)项目由来自五个欧洲国家的研究者共同参与,将为桥梁、建筑、风力涡轮机叶片和海上结构制造出更耐损伤的复合材料。

    DACOMAT项目旨在延长桥梁的使用寿命,降低桥梁和其他大型基础设施的生命周期成本。图片来源:Fireco

    一个旧的混凝土桥梁,狭窄的车道必须加宽,以适应更多的交通行人和满足新的标准,这已经成为当前桥梁现状。事实证明,在没有进一步支撑的情况下,该桥不能支撑更大混凝土上部结构的重量,从而导致桥梁支柱或桥墩造价昂贵,其成本完全可以建一座新桥梁。

    位于挪威特隆赫姆的斯金特工业的项目负责人 Jens Kjær Jørgensen说道:“在欧盟地平线2020的指导下,来自五个不同国家的研究团队正在进行材料研究,以制造甲板延伸和其他由纤维增强塑料制成的桥梁元件。”这一研究项目,从2018年1月开始,并将持续到2021年12月,被称为DACOMAT,即耐损伤复合材料。

    DACOMAT的目的是开发更多的耐损伤和破坏性可预测的低成本复合材料,特别是那些用于大型载重结构如桥梁、建筑物、风轮机叶片和离岸结构的材料。所开发的材料和状态监测解决方案将为制造缺陷提供高耐受性和高承受损害的能力。这将使大型复合结构的制造和维护成本得到大大降低。项目成果主要包括:关于临界承载复合结构可靠性设计准则和建模工具的开发;材料鉴定指南;结构健康监测(SHM)和损伤评估解决方案;大型复合结构的生命周期分析(LCA)方法。

    Jørgensen说:“该项目正在由STENF协调。除了几所大学外,参与公司包括Polynt复合材料(carpentersville,IL,美国),(斯坦福,CT,美国,赫氏),Carbures(加的斯,西班牙),3b玻纤(Battice,比利时),LM风能(Lunderskov,丹麦)和DNV GL(奥斯陆,挪威)。参与者将共同努力以确保裂缝破坏复合桥梁构件和风力涡轮机叶片强度的可能性最小。具体来说,该项目旨在生产复合材料,并使其比现有的替代压裂裂缝更难以传播。目的是利用所研发复合材料使桥梁的使用寿命比传统结构更长,同时降低寿命成本30%。对于风力涡轮机叶片,其目标是寿命增长30%,成本降低50%。”

    随着时间的推移,为了获得更多关于材料性质的知识,该项目还旨在开发技术,以确保利用光学和声学传感器来监测裂纹的扩展。这个项目的成果也将适用于海上设施和其他需要承受恶劣环境条件的结构。

    文章来自compositesworld网站,原文题目为Euro study seeks optimally damage-tolerant infrastructure composites。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=179138
相关报告
  • 《揭密欧洲最新碳纤维复合材料汽车部件开发项目MAI Skelett》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-04-25
    • 德国碳纤维复合材料联盟(Carbon Composites e.V.,CCeV)是一家由企业和研究所组成的联合机构,其成员遍布高性能纤维增强复合材料的整条产业链。该联盟下设多个分支机构,MAI Carbon是其中之一。2012年1月19日经独立评审团评审,MAI Carbon通过了德国联邦教育及研究部(BMBF)前沿技术产业集群的第三轮选拔,成为五大前沿技术产业集群之一,位于慕尼黑、奥格斯堡和英戈尔施塔特三角区,计划到2020年形成碳纤维复合材料的规模化产业集群。为了实现这一目标,MAI Carbon成员企业开展的联合研发项目围绕复合材料部件全生命周期,内容涉及树脂纤维原材料、零部件制造及材料回收等全产业链各环节。 MAI Carbon机构由奥迪、宝马、Premium Aerotec、空客直升机、Voith、SGL,以及IHK Swabia、德国碳纤维复合材料研究所(LCC)、慕尼黑工业大学等创立,目前拥有超过120家会员单位。2012年以来,该机构成员间的联合研发项目多达39项,资助金额从几十万欧元到几百万欧元不等。 今天,小编带您了解一下MAI Carbon一项名为“MAI Skelett”的示范项目。该项目是复合材料制造商在寻求降低部件成本道路上的一次全新尝试。研究者通过不断努力,混合使用多种材料,将“合适的材料用于合适的部位”,同时最大程度地满足了规模生产对自动化和功能一体化的需求。 项目简介 MAI Skelett项目获得了德国联邦教育及研究部(BMBF)190万欧元的资助,为期17个月,由宝马公司主持实施,合作企业包括P+Z Engineering公司、SGL Automotive Carbon Fibers公司、CirComp公司和Eckerle公司。该项目针对挡风玻璃上方、两个A柱之间的挡风玻璃横向框架结构开展研发工作,并形成产品和工艺示范。其设计以现有的宝马i3车型为基础,遵从该车型设计的所有功能和结构要求。目标部件不仅是车顶横向框架结构件,提供了良好的刚度(能够有效降低NVH:噪音、振动和粗糙度)、强度(帮助车顶件在压缩实验中满足撞击要求),同时可用于遮阳板、装饰件、照明线等内饰件的固定,以及为挡风玻璃、天窗和车顶外面板提供连接支持。 该项目首次提出“骨架”设计理念,采用单向碳纤维增强复合材料及拉挤成型工艺,经热成型-复合模塑(overmolding)两步法,在75秒内生产出结构件,超越了前期各版本部件的工艺要求,实现了热塑性复合材料在白车身结构中的规模化应用。另外,该项目提高了白车身部件的残余应力,将其断裂方式从脆性断裂变为韧性断裂,从而改善了部件的碰撞行为。采用“骨架”设计的挡风玻璃框架弯折处有4根单向碳纤维增强复合材料拉挤棒,经复合模压工艺封装于部件内。4根拉挤棒中 ,两根靠近零件底部,两根靠近顶部,不在同一平面内,便于为部件提供扭转刚度和复杂形状的功能附件。 材料选择 项目采用价格相对较低的大丝束碳纤维为增强材料。由于50k大丝束碳纤维单丝排列紧密,树脂浸润非常困难。因此,需要结合纤维展宽技术对纤维导向进行优化,才能达到理想的预浸效果,同时保证了50%左右的高纤维体积含量。SGL掌握了这一技术,并将拉挤型材列入了其“热塑性产品备选箱”。 除了增强纤维,项目同样考察了不同种类的PA6树脂,以确保其粘度和流变特性能够对拉挤速率和产品质量进行优化。SGL的“热塑性产品备选箱”为项目提供了多种备选材料,包括碳纤维单向带、有机板、不同长度的短切纤维,以及单向碳纤维增强拉挤件。以上材料均采用SIGRAFIL 50k 碳纤维,以及适用于聚丙烯、聚酰胺等热塑性树脂基体的上浆剂。而聚酰胺类热塑性树脂的种类很多,包括PA6、PA66、PA12以及PPA中的部分类型都可以作为候选材料。有些PA6甚至可以在模压过程中通过反应原位获得。 热成型和复合模塑工艺 MAI Skelett项目最初选用的材料体系为碳纤维增强PA6复合材料。随后,研究人员对材料组分进行了调整,使材料能够适应部件形状及不同部位承载载荷的需要。选择热成型工艺主要考虑了碳纤维需在尽量直的情况下才能表现出高强度和高刚度,因此,拉挤棒材在树脂基体流动方向上被拉伸,其端头则进行弯折和展宽处理。 第二步,需将热成型后的拉挤棒材置于红外加热器之下,并在50秒内将其加热至指定温度,随后用机械臂将其转移至注塑模具中。短切纤维树脂糊经复合模塑工艺注塑于型材之上或其周围。复合模塑环节对模具和工艺过程的精度要求极高,这样方能确保热压后的拉挤棒材位置保持不变。 拉挤棒材热成型和复合模塑两步工艺的总周期约为75秒。由于热塑性树脂基体能够在复合模塑工艺之前重熔,因此,热压处理后的拉挤棒材能够在极短时间内完成部件的最终塑形 ,并与二次注塑材料连接为一体。热塑性树脂的这一特点甚至可使其与金属部件形成连接。同时,热塑性树脂基复合材料的热成型和注塑工艺同样能够获得产品质量的一致性和工艺过程的可控性,这对于规模化生产至关重要。 韧性断裂 能与玻璃纤维和碳纤维树脂糊相容的PPA和PA6树脂基拉挤型材部件韧性更佳,断裂模式也为韧性断裂。尽管韧性断裂模式的获得损失了挡风玻璃框架所能传递的部分载荷,但这却显著提高了白车身的结构完整性和综合使用性能。 尽管在项目结题报告中,宝马公司并未具体指出其倾向的材料组合,但报告总结称,最终的模拟和测试结果表明,“骨架”结构超越了单纯的碳纤维增强复合材料部件除扭转刚度以外所有的性能指标,而扭转刚度对于挡风玻璃框架来说并非关键数据。与普通的碳纤维复合材料部件相比,“骨架”结构部件碰撞过程的载荷水平和能量吸收水平都更为优异。同时,该部件具有韧性断裂模式,不但进一步提高了复合材料结构的碰撞断裂性能,还明确了其断裂行为与白车身整体结构间的关系。 “骨架”设计的未来应用 在结题报告中,宝马公司称将“骨架”设计理念应用于另外6个汽车部件时,同样能够显著降低生产成本、原材料成本和工装成本。SGL公司也建议将该技术应用于汽车及航空座椅、仪表盘、机器手臂、X光工作台等领域。 对“骨架”设计理念的研究并未止步,在随后开展的研发项目MAI Multiskelett中,该设计方法被扩展到了多轴向应力部件,重点研究了轴承部件和拉挤型材的连接部分,特别是有多条载荷路径交叉的大型结构件。此处暂不赘述。 “骨架”理念设计的挡风玻璃横向框架结构件,采用拉挤工艺和复合模塑工艺,有效缩短了工艺周期、减少了材料浪费,诠释了碳纤维在单向载荷结构件上的有效利用方式,是下一代碳纤维增强复合材料设计和规模化生产的典型示范。同时,将其他部件产生的碳纤维边角料用于制作复合模塑工艺所需的树脂糊,能够有效提高部件的功能性和使用性能,是提高复合材料可持续性的有效方法。
  • 《综述国外空间领域用复合材料的研究进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-04-01
    • 太空计划是全球各国竞相追逐的热点,而太空计划主要由三个关键部分组成:卫星、运载火箭和空间中心。 本文主要围绕国外在空间领域用复合材料的研究进行了综述,按照上述三个关键组成分别介绍了研究进展。 卫星用复合材料研究主要以高模量碳纤维复合材料及铝基复合材料为主,运载火箭则主要集中在碳纤维-碳化硅高耐热性复合材料研究,而空间中心主要研究焦点在于开发防辐射等功能性复合材料。 太空计划和空间研究的发展一直是许多发达国家和发展中国家的关注焦点。空间领域可以为国家提供了广泛的有益应用,如通信、农业、经济、国防、科学和医学研究等。卫星、运载火箭和空间中心是太空计划的三个关键组成部分。卫星是指通过采用专门系统发射到太空的实体,它可以围绕着恒星、行星或地球运行,其主要任务是收集信息。 运载火箭可以看作是重型火箭,它主要用于将卫星、宇航员或其他有效载荷从地球运送到太空。空间中心是指使用运载火箭将卫星或有效载荷发射到空间的端口,它还用于接收运载火箭,在完成任务后将宇航员带回地球,如我国的天宫一号空间中心。 长期以来,金属铝和铝合金是航天工业最有前途的材料之一,原因在于其优异的强度重量比、可加工性、成本效益、耐腐蚀性等。但是随着高性能碳纤维复合材料出现,由于CFRP综合了成本效益高、易加工、高强度重量比、多功能性和隔热、烧蚀等多种性能,因此成为航天领域最具发展潜力的一种材料,并逐渐在航天工业中占据主导地位。 在航天用碳纤维复合材料中,存在一种特殊的复合材料被称为纤维金属层板(FML),目前在航天领域得到了广泛的应用。FML是通过使用纤维增强粘合剂的交替层加固铝板。这种组合对复合材料产品产生了协同效应,使金属和增强材料具有更加优异的性能,如耐腐蚀性、隔热性、损伤容限、重量减轻、疲劳耐久性、比强度和成本效益。 1、卫星结构用复合材料研究进展 Schelder等分析了不同类型的碳纤维复合材料在卫星结构中的应用,指出单向高模量碳纤维复合材料(HM-CFRP)可应用于卫星吊带、吊臂、外壳和太阳能电池板等领域,HM-CFRP在这些的应用归因于利用其各向异性特性,可定制实现高刚度、高比强度、低热膨胀/导电性和尺寸稳定性。由于玻璃纤维和芳纶纤维复合材料的低传输损耗和导电性,可在卫星天线中获得广泛应用。 在碳纤维金属基复合材料领域,Toor等认为由于具有低放气、高比强度、低热膨胀系数(CTE)和重量轻等优点,铝基复合材料可在卫星结构、有效载荷、姿态控制系统、动力系统、热控制系统和推进控制系统中实现应用。而帝国金属工业公司(IMI)通过将CFRP铺在铝板上形成的蜂窝结构,最终可使卫星结构组件的重量比金属组件减少33%。 Patil等研究发现Al-CFRP层合板与玻璃纤维层合板相比,具有更高的力学性能,但会存在电腐蚀和界面不稳定等问题,可以通过铝的预处理和适当的工艺来解决。Jaroslaw等讨论了铝-碳纤维环氧增强层压板的抗冲击性和损伤增长机制,Al-CFRP层合板具有优异的界面强度和损伤容限,主要归因于CFRP出色的刚度、力学性能以及与铝的韧性协同效应,此外还指出层合板中使用最佳配置是在0°/90°和±45°方向。Dinca等讨论了FMLs的力学性能,与玻璃纤维和金属材料层合板相比,FML具有优异的损伤容限、耐疲劳、抗裂、拉伸和弯曲强度。 综上研究结果可以推断,通过铺层取向、良好的损伤容限、抗疲劳、耐腐蚀、重量减轻和高比强度设计,针对Al-CFRP层合板在脱气、振动和热性能方面的进一步优化,可使其成为卫星结构应用很吸引力的候选材料。 2、运载火箭用复合材料研究进展 Steven讨论了通过应用先进网格加强结构(AGS)来开发下一代运载火箭的方法,利用五轴长丝缠绕机的自动化工艺在芯轴上螺旋缠绕浸有未固化树脂的纤维,得到了一种肋皮AGS结构的复合材料,其具有性价比高、可靠性高、强度高、抗损伤能力强、防潮性强等优势。这项技术被用于制造有效载荷罩,该圆锥形组件将有效载荷封装在运载火箭上,与金属铝制部件相比,重量减轻了61%,制造时间缩短了88%。 Christin探讨了热结构复合材料的发展、制造和应用,指出采用化学气相渗透法(CVI)、热解法(PIP)或树脂-沥青-聚合物浸渍法(树脂-沥青-聚合物浸渍法)对碳纤维和碳化硅预制纤维在2D和4D方向上进行增强,可制备出应用于运载火箭出口锥、喉管喷嘴、制动盘和助推器等结构件用的高温复合材料。 Krenkel等研究了碳纤维-碳化硅复合材料的先进摩擦系统及在空间应用,通过以硅和碳化硅为基体,采用液态硅渗透工艺制备碳纤维-碳化硅多孔复合材料,该复合材料具有高耐磨性、良好的热冲击性、低密度、良好的耐磨性和出色的摩擦学性能,可应用于碟形刹车、喷管叶片、发动机襟翼和运载火箭鼻罩等领域。 Kang等研究了以金属铝为内衬、高模量碳纤维(HMCF)增强树脂基复合材料为外层的运载火箭用低温储罐接头系统,通过以Bondex606、EA9696和FM73为粘合剂,在铝制6061-T6衬里外部使用HM-CFRP层压制备得到了一种可靠的复合材料产品,可在-150°C的条件下保持强度。 Glass等讨论了陶瓷基复合材料在运载火箭热防护系统中的应用,碳纤维-碳化硅复合材料、碳碳复合材料、碳化硅-碳化硅复合材料具有优异的高温耐久性、热冲击、重量轻和良好的尺寸稳定性,可用于运载火箭、航天飞机轨道盘、盖板、承重航空航天器壳、燃料管、机体襟翼、装配接头和热障涂层的隔热结构。 3、空间中心用复合材料研究进展 空间中心的发射台设施本身是一个巨大的复杂结构。31000KN的推力从发射台向上发射太空飞行器,如此巨大的力所产生的振动是巨大的,这种结构需要非常高强度的材料。目前还没有关于发射台设施材料的公开文献,但根据上述讨论可以推断,对于便携式发射台,确实可以开发既轻又具有高阻尼强度的复合材料。 Theriot等讨论了利用复合材料屏蔽外层空间辐射的问题,通过用Regolith(一种从月球中提取的材料)增强聚乙烯,开发了一种有趣的复合材料,该复合材料可以保护和屏蔽人体免受中子辐射的影响,而无需从地球上运输此类材料。 Zhong等讨论了复合材料对宇宙辐射的屏蔽试验,以玻璃纤维环氧树脂和纳米环氧树脂对超高分子量聚乙烯(UHMWPE)进行手糊补强的方法,所制备的复合材料对氯基辐射具有良好的屏蔽和保护作用,同时增强了结构屏蔽应用的机械性能。 Kumar报道了用于空间坡度传感器,人造肌肉和执行器的复合材料的前景,通过用带电荷的聚电解质膜和贵金属增强碳或石墨,形成离子聚合物金属复合材料(IPMCs),这对精确的传感和驱动运动具有很大的潜力。这些复合材料可应用于宇航员的宇航服中,以实现更好、更精确的运动,也可实现小型结构的自动化装配、对机械装配和漫游车的微调以及用于对空间站和探索的机器人控制。 4、未来展望 对于长时间的太空任务而言,最大限度地减轻重量极其重要,因为它可以增加有效载荷附件,目前这只能通过用复合材料代替传统的金属结构来实现。 用高性能和高性价比的复合材料代替运载火箭和卫星材料是发展空间项目的一个重要研究领域,而为了使人类能够在空间生存,必须开发具有超长使用寿命、具有结构和功能应用以及同时没有生物和医学副作用的复合材料。