《综述国外空间领域用复合材料的研究进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-04-01
  • 太空计划是全球各国竞相追逐的热点,而太空计划主要由三个关键部分组成:卫星、运载火箭和空间中心。

    本文主要围绕国外在空间领域用复合材料的研究进行了综述,按照上述三个关键组成分别介绍了研究进展。

    卫星用复合材料研究主要以高模量碳纤维复合材料及铝基复合材料为主,运载火箭则主要集中在碳纤维-碳化硅高耐热性复合材料研究,而空间中心主要研究焦点在于开发防辐射等功能性复合材料。

    太空计划和空间研究的发展一直是许多发达国家和发展中国家的关注焦点。空间领域可以为国家提供了广泛的有益应用,如通信、农业、经济、国防、科学和医学研究等。卫星、运载火箭和空间中心是太空计划的三个关键组成部分。卫星是指通过采用专门系统发射到太空的实体,它可以围绕着恒星、行星或地球运行,其主要任务是收集信息。

    运载火箭可以看作是重型火箭,它主要用于将卫星、宇航员或其他有效载荷从地球运送到太空。空间中心是指使用运载火箭将卫星或有效载荷发射到空间的端口,它还用于接收运载火箭,在完成任务后将宇航员带回地球,如我国的天宫一号空间中心。

    长期以来,金属铝和铝合金是航天工业最有前途的材料之一,原因在于其优异的强度重量比、可加工性、成本效益、耐腐蚀性等。但是随着高性能碳纤维复合材料出现,由于CFRP综合了成本效益高、易加工、高强度重量比、多功能性和隔热、烧蚀等多种性能,因此成为航天领域最具发展潜力的一种材料,并逐渐在航天工业中占据主导地位。

    在航天用碳纤维复合材料中,存在一种特殊的复合材料被称为纤维金属层板(FML),目前在航天领域得到了广泛的应用。FML是通过使用纤维增强粘合剂的交替层加固铝板。这种组合对复合材料产品产生了协同效应,使金属和增强材料具有更加优异的性能,如耐腐蚀性、隔热性、损伤容限、重量减轻、疲劳耐久性、比强度和成本效益。

    1、卫星结构用复合材料研究进展

    Schelder等分析了不同类型的碳纤维复合材料在卫星结构中的应用,指出单向高模量碳纤维复合材料(HM-CFRP)可应用于卫星吊带、吊臂、外壳和太阳能电池板等领域,HM-CFRP在这些的应用归因于利用其各向异性特性,可定制实现高刚度、高比强度、低热膨胀/导电性和尺寸稳定性。由于玻璃纤维和芳纶纤维复合材料的低传输损耗和导电性,可在卫星天线中获得广泛应用。

    在碳纤维金属基复合材料领域,Toor等认为由于具有低放气、高比强度、低热膨胀系数(CTE)和重量轻等优点,铝基复合材料可在卫星结构、有效载荷、姿态控制系统、动力系统、热控制系统和推进控制系统中实现应用。而帝国金属工业公司(IMI)通过将CFRP铺在铝板上形成的蜂窝结构,最终可使卫星结构组件的重量比金属组件减少33%。

    Patil等研究发现Al-CFRP层合板与玻璃纤维层合板相比,具有更高的力学性能,但会存在电腐蚀和界面不稳定等问题,可以通过铝的预处理和适当的工艺来解决。Jaroslaw等讨论了铝-碳纤维环氧增强层压板的抗冲击性和损伤增长机制,Al-CFRP层合板具有优异的界面强度和损伤容限,主要归因于CFRP出色的刚度、力学性能以及与铝的韧性协同效应,此外还指出层合板中使用最佳配置是在0°/90°和±45°方向。Dinca等讨论了FMLs的力学性能,与玻璃纤维和金属材料层合板相比,FML具有优异的损伤容限、耐疲劳、抗裂、拉伸和弯曲强度。

    综上研究结果可以推断,通过铺层取向、良好的损伤容限、抗疲劳、耐腐蚀、重量减轻和高比强度设计,针对Al-CFRP层合板在脱气、振动和热性能方面的进一步优化,可使其成为卫星结构应用很吸引力的候选材料。

    2、运载火箭用复合材料研究进展

    Steven讨论了通过应用先进网格加强结构(AGS)来开发下一代运载火箭的方法,利用五轴长丝缠绕机的自动化工艺在芯轴上螺旋缠绕浸有未固化树脂的纤维,得到了一种肋皮AGS结构的复合材料,其具有性价比高、可靠性高、强度高、抗损伤能力强、防潮性强等优势。这项技术被用于制造有效载荷罩,该圆锥形组件将有效载荷封装在运载火箭上,与金属铝制部件相比,重量减轻了61%,制造时间缩短了88%。

    Christin探讨了热结构复合材料的发展、制造和应用,指出采用化学气相渗透法(CVI)、热解法(PIP)或树脂-沥青-聚合物浸渍法(树脂-沥青-聚合物浸渍法)对碳纤维和碳化硅预制纤维在2D和4D方向上进行增强,可制备出应用于运载火箭出口锥、喉管喷嘴、制动盘和助推器等结构件用的高温复合材料。

    Krenkel等研究了碳纤维-碳化硅复合材料的先进摩擦系统及在空间应用,通过以硅和碳化硅为基体,采用液态硅渗透工艺制备碳纤维-碳化硅多孔复合材料,该复合材料具有高耐磨性、良好的热冲击性、低密度、良好的耐磨性和出色的摩擦学性能,可应用于碟形刹车、喷管叶片、发动机襟翼和运载火箭鼻罩等领域。

    Kang等研究了以金属铝为内衬、高模量碳纤维(HMCF)增强树脂基复合材料为外层的运载火箭用低温储罐接头系统,通过以Bondex606、EA9696和FM73为粘合剂,在铝制6061-T6衬里外部使用HM-CFRP层压制备得到了一种可靠的复合材料产品,可在-150°C的条件下保持强度。

    Glass等讨论了陶瓷基复合材料在运载火箭热防护系统中的应用,碳纤维-碳化硅复合材料、碳碳复合材料、碳化硅-碳化硅复合材料具有优异的高温耐久性、热冲击、重量轻和良好的尺寸稳定性,可用于运载火箭、航天飞机轨道盘、盖板、承重航空航天器壳、燃料管、机体襟翼、装配接头和热障涂层的隔热结构。

    3、空间中心用复合材料研究进展

    空间中心的发射台设施本身是一个巨大的复杂结构。31000KN的推力从发射台向上发射太空飞行器,如此巨大的力所产生的振动是巨大的,这种结构需要非常高强度的材料。目前还没有关于发射台设施材料的公开文献,但根据上述讨论可以推断,对于便携式发射台,确实可以开发既轻又具有高阻尼强度的复合材料。

    Theriot等讨论了利用复合材料屏蔽外层空间辐射的问题,通过用Regolith(一种从月球中提取的材料)增强聚乙烯,开发了一种有趣的复合材料,该复合材料可以保护和屏蔽人体免受中子辐射的影响,而无需从地球上运输此类材料。

    Zhong等讨论了复合材料对宇宙辐射的屏蔽试验,以玻璃纤维环氧树脂和纳米环氧树脂对超高分子量聚乙烯(UHMWPE)进行手糊补强的方法,所制备的复合材料对氯基辐射具有良好的屏蔽和保护作用,同时增强了结构屏蔽应用的机械性能。

    Kumar报道了用于空间坡度传感器,人造肌肉和执行器的复合材料的前景,通过用带电荷的聚电解质膜和贵金属增强碳或石墨,形成离子聚合物金属复合材料(IPMCs),这对精确的传感和驱动运动具有很大的潜力。这些复合材料可应用于宇航员的宇航服中,以实现更好、更精确的运动,也可实现小型结构的自动化装配、对机械装配和漫游车的微调以及用于对空间站和探索的机器人控制。

    4、未来展望

    对于长时间的太空任务而言,最大限度地减轻重量极其重要,因为它可以增加有效载荷附件,目前这只能通过用复合材料代替传统的金属结构来实现。

    用高性能和高性价比的复合材料代替运载火箭和卫星材料是发展空间项目的一个重要研究领域,而为了使人类能够在空间生存,必须开发具有超长使用寿命、具有结构和功能应用以及同时没有生物和医学副作用的复合材料。

相关报告
  • 《详细盘点2020年国外航空航天领域用复合材料的最新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-04-27
    • 进入2020年以来,国外在航空航天领域用复合材料又有了系列新进展,航空领域如美国陆军未来攻击侦察机,航天领域包括英国商业火箭计划、美国空间可展开结构项目及今年7月即将进行的火星登录计划。为此小编将带来近期尤其是2020年以来,国外在航空航天领域用复合材料最新进展。 01 复合材料使陆军未来攻击侦察机(FARA)的性能提升 美国陆军未来攻击侦察机(Future Attack Reconnaissance Aircraft,简写FARA)已进入西科斯基公司的RAIDER X的原型机阶段,该机基于S-97型RAIDER并采用了复合材料机身。 FARA将飞入要求苛刻且竞争激烈的环境中,因此它必须具备出色的垂直升力,这是美国陆军六大现代化优先任务之一,而且必须具有坚韧和快速的性能。西科斯基公司的RAIDER X是一种快速、灵活、可生存的复合同轴直升机,它提供了陆军所需的关键部件,包括机动性、高巡航速度、紧凑的占地面积和高热悬停(在高海拔和高温下的悬停能力)。 作为陆军未来垂直升力追踪的一部分,RAIDER X被选中进入FARA竞争性原型项目的第二阶段,因此西科斯基将继续研究RAIDER X原型,为飞行测试项目做准备。基于西科斯基s-97型掠袭机的“掠袭者X”将受益于s-97的X2技术,该技术结合了刚性、对转叶片、电传飞行控制和综合辅助推进系统。洛克希德马丁公司将提供从数字设计到任务系统的服务。 为了满足S-97的严格要求,西科斯基与包括旋转复合材料技术公司、Hexcel公司和鹰航空技术公司合作。直升机机身由复合材料制成,在极端条件下提供所需的重量、强度和韧性。“X2的力量正在改变游戏规则。它结合了低速直升机性能的最佳元素和飞机的巡航性能,”西科斯基实验试飞员比尔·法尔说,他是一名退役的陆军飞行员。“我们今天乘坐的S-97突袭机的每一次飞行都降低了风险,优化了我们的FARA原型RAIDER X。”西科斯基还将继续致力于X2技术计划,作为RAIDERX项目的一部分。 02 碳纤维增强铝基复合材料推动商业轨道火箭飞速发展 总部位于英国的私人低成本轨道发射服务公司Orbex正在制造商用轨道火箭Prime,它由轻质碳纤维和铝复合材料的优化混合加工而成,与同尺寸型号火箭相比,重量下降了30%。 Orbex公司为未来几年制定了系列宏伟计划,包括从尚未建成的太空港(spaceport)发射小型卫星,并在2022年为新客户TriSept发起专门的特别发射任务。实现这些崇高目标的关键是Orbex的Prime,这是一种轨道火箭,由碳纤维和铝复合材料的优化混合物制成。 Orbex在其苏格兰总部安装了高速碳纤维缠绕机。公司官员解释说:“这台18米长的机器可以自动完成复杂混合物的快速编织,从而制造出主要的火箭结构。”还安装了一个全尺寸的高压灭菌釜,从而能够处理大型火箭零件,例如一级燃料箱等,这些零件已准备好应对太空中的极端环境,包括承受高达500倍大气压的巨大压力。 由于采用了碳纤维增强铝基复合材料,每枚Orbex Prime火箭的重量仅为1.5吨,比相同尺寸的火箭轻30%,并且能在60秒内从0加速到1,330 km / h。Orbex Prime火箭发动机采用3D打印技术一体制造,从而消除了因连接而产生缺陷的风险。Prime由生物丙烷提供燃料,与煤油基火箭燃料相比,该生物燃料燃烧干净,可减少90%的碳排放。Orbex火箭的设计可重复使用,不会留下轨道碎片。 Orbex首席执行官Chris Larmour表示:“我们正在以前所未有的方式制造火箭……NewSpace(参与太空飞行的私营企业)的重点是提供更快、更好和更便宜的太空通道。在机器人装配线上花费数亿美元或雇用数以千计的员工来生产重型金属火箭是一种过时的方法。建立现代太空业务意味着更新制造精神,使其更快、更敏捷、更灵活。这就是我们在Orbex所做的。” 03 美国宇航局资助加速复合材料可展开结构设计项目 隶属于美国普渡大学的商业软件供应商AnalySwift有限责任公司获得了美国宇航局(NASA)的一笔拨款,将用于进一步开发其SwiftComp软件,该软件为高应变复合材料制成的可展开结构提供高效、高保真的建模技术。 AnalySwift LLC从NASA获得了125000美元的小企业技术转让(STTR)赠款,以帮助其进一步开发SwiftComp软件。这项技术是由普渡大学工程学院航空航天学教授余文斌开发的。该公司从普渡大学研究基金会技术商业化办公室获得技术许可。 AnalySwift总裁兼首席执行官艾伦•伍德(Allan Wood)解释道:“Swift Comp将材料和结构的基本组成部分的细节作为输入,然后输出宏观分析所需的结构特性。它可用于组合梁、板和壳,以及三维结构,用于微观力学和结构建模。” ”除了可展开的复合材料吊杆,NASA还可以找到该软件的其他用途,包括在太空环境中的活体容器和可折叠面板、卫星巴士、漫游车、天线等。也可以用于飞机的柔性机翼和垂直升降飞机的结构。该软件还获得了卫星和移动电话部件(包括印刷电路板)的使用许可。 04 复合材料航空壳将为美国“流浪者号”火星探测器提供保护 洛克希德·马丁公司(Lockheed Martin)使用平铺的酚醛浸渍碳消融剂(PICA)热保护系统开发了一种隔热板,以保护火星探测器2020Rover流浪者在进入火星表面、降落和着陆过程中免受强烈的热量。 NASA今年将开展前往火星的任务,这将是该行星有史以来最具挑战性的进入、下降和着陆(EDL)序列之一,因为火星车将降落在一个充满巨石和沙丘的地区。整个旅程将花费近七个月的时间,而火星车预计将在火星表面停留两年。 洛克希德·马丁公司的机壳是直径最大约15英尺的有史以来最大的用于行星飞行的飞机,其设计目的是保护流动站免受EDL期间高达3800华氏度的温度影响。机壳(隔热罩和后壳的组合)由夹在M55J高模量碳纤维-环氧树脂面板之间的铝蜂窝结构组成,并通过九个弹簧分离机构固定在一起。 隔热罩使用平铺的酚醛浸渍碳烧蚀剂(PICA)热保护系统来防止灼热。隔热罩的空气动力学特性还可以起到“刹车”的作用,当航天器以接近12,000 mph的速度进入火星稀薄的大气层时,有助于减慢航天器的速度。 “即使我们有为好奇号流浪者建造几乎相同的航空器外壳的经验,直径近15英尺的复合材料结构在10年后的建造和测试中也面临着同样的挑战,” Mars 2020航空器外壳项目经理尼尔·蒂斯说。“我们已经为NASA探索火星40年来建造了每个火星航空器进入系统,因此我们从这一经验中汲取了宝贵经验,以构建这一重要系统。”洛克希德·马丁公司(Lockheed Martin)最近将火星2020火星探测器的机体交付给了发射场,即美国宇航局在佛罗里达州的肯尼迪航天中心。“火星2020”火星车正在加利福尼亚州帕萨迪纳市NASA的喷气推进实验室进行测试,该任务将于2020年7月发射,并于2021年2月在Jezero陨石坑降落在火星上。
  • 《材料前沿最新综述精选》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-20
    • 1. Advanced Materials: 碳纳米管和石墨烯在锂离子和锂硫电池中的调控作用 随着社会对高能量密度电池需求的不断增长,为便携式电子设备供电,以及推进车辆电气化和电网储能,已经将锂电池技术推向了极其重要的位置。碳纳米管( CNTs )和石墨烯( graphene )具有许多吸引人的特性,为改善锂离子( Li - ion )和锂硫( Li - S )电池的性能,人们进行了深入研究。然而,人们对它们在锂离子电池和锂电池中的实际作用缺乏普遍和客观的了解。人们认识到,CNTs和石墨烯不是合适的活性锂存储材料,而是更像一种调节剂:它们不与锂离子和电子发生电化学反应,而是用于调节特定电活性材料的锂存储行为,并增加锂电池的应用范围。中国科学院金属研究所的李峰研究员和成会明院士(共同通讯)等人就本文首先讨论了锂电池的评价指标,在此基础上,从基本电化学反应到电极结构和整体电池设计,综合考虑了碳纳米管和石墨烯在锂离子电池和Li - S电池中的调控作用。最后,展望了碳纳米管和石墨烯如何进一步促进锂电池的发展。 文献链接:The Regulating Role of Carbon Nanotubes and Graphene in Lithium–Ion and Lithium–Sulfur Batteries(Adv. Mater., 2018, DOI: 10.1002/adma.201800863) 2. Advanced Materials: 金属有机骨架衍生材料:能量转换与储存的进展与展望 探索高效耐用的新材料是可持续能源转换和储存系统领域的主要要求。在过去三十年中,科研人员已经开发了许多技术来提高催化剂体系的效率,控制颗粒的组成、结构、表面积、孔径以及形态。在这方面,金属有机骨架( MOF )衍生的催化剂作为具有可调性质和活性的能量转换和存储的最佳材料而出现。近年来,金属氧化物、硫族化物、磷化物、氮化物、碳化物、合金、碳材料或它们的复合物等若干纳米或微结构被探索用于电化学能量转换,如析氧、析氢、氧还原或电池材料。从实际应用来看,人们对高效储能系统的兴趣也越来越大。尽管对MOF和MOF衍生材料的合成和应用有多种综述,但它们在电化学能量转换和存储中的应用是一个全新的研究领域,并且是近年来发展起来的。韩国汉阳大学的Ungyu Paik(通讯作者)等人在本文中着重介绍了MOF材料的系统设计和对其固有性能的控制,用以提高电化学性能。 文献链接:Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage(Adv. Mater., 2018, DOI: 10.1002/adma.201705146) 3.Advanced Energy Materials: 利用碳酸盐效应和Z - Scheme反应光催化分解太阳能制氢 开发太阳能转换和储存的创新技术,对解决全球变暖问题和建立可持续社会具有重要意义。利用半导体粉末的光催化分解水反应作为一种有前途的直接而且简单的太阳能转换技术,已经得到了广泛的研究。然而,化学计量比( H2/O2 = 2 )的H2和O2气体的逸出由于各种问题而非常困难,例如不利的反向反应和不匹配的带势。两个重要的发现拓宽了可用的光催化剂的种类,即:碳酸盐阴离子效应和使用氧化还原介质的Z - scheme光催化反应。研究人员已经发现碳酸氢根阴离子通过优先的过氧化物形成和随后分解成O2而充当氧化还原催化剂。由于使用氧化还原介质的Z - scheme反应减轻了带势失配,因此它广泛适用于各种可见光光催化剂。日本产业技术综合研究所的Kazuhiro Sayama (通讯作者)等人在本文中主要综述了利用碳酸根阴离子效应和Z - scheme反应制备太阳能氢的光催化分解水的研究进展。此外,还综述了光催化-电解混合体系(一种先进的Z - scheme反应概念)在实际和经济制氢方面的最新进展。 文献链接:Photocatalytic Water Splitting for Solar Hydrogen Production Using the Carbonate Effect and the Z-Scheme Reaction(Adv. Energy Mater., 2018, DOI: 10.1002/aenm.201801294) 4. Advanced Functional Materials: 用于柔性和神经形态计算的新型电子器件 从可穿戴的衣服到内脏,可以连接到各种表面的新兴种类的柔性电子系统推动了通信 (例如,物联网、增强现实)和临床研究的显著进步,改变了今天的个人计算模式。“塑料上的系统”领域正处于向超认知社会创新突破的边缘,它与当前备受关注的神经形态应用相融合,可以提供个性化反馈治疗和自主驾驶等智能服务。韩国先进科学研究所的Keon Jae Lee(通讯作者)等人从器件结构、材料、制造工艺和潜在的研究领域着笔,综述了柔性和神经形态技术领域的代表性进展和前言。 文献链接:Novel Electronics for Flexible and Neuromorphic Computing(Adv. Energy Mater., 2018, DOI: 10.1002/adfm.201801690) 5. Advanced Energy Materials: 可充电钠离子电池先进电极材料的探索 随着锂离子电池(LIB)市场的快速增长,人们对有限的锂资源产生了担忧,可充电钠离子电池(SIBs)由于钠的大量存在而在电能存储领域受到越来越多的关注。与成熟的商业LIBs相比,SIB系统的所有组件,如电极、电解质、粘合剂和隔膜,在达到实际工业应用水平之前需要进一步探索。借鉴LIB研究成果,SIB电极材料正得到广泛研究,近年来取得了巨大进展。南京大学的郭少华和周豪慎(共同通讯)等人综述了SIBs电极材料的研究进展。提出并系统地研究了各种用于SIBs的新型电极材料,包括具有层状或隧道结构的过渡金属氧化物、聚阴离子化合物和有机分子。展示了几种具有中等能量密度和超长循环性能的有希望的材料。开发适当的掺杂和/或表面处理方法可以有效地促进电化学性能。文章还概述了在实际应用中开发令人满意的SIB电极材料的挑战和机遇。 文献链接:Exploration of Advanced Electrode Materials for Rechargeable Sodium-Ion Batteries (Adv. Energy Mater., 2018, DOI: 10.1002/aenm.201800212) 6. Chemical Society Reviews: 二维层状过渡金属二硫族化物中缺陷和掺杂物的原子结构 层状过渡金属二硫族化物(TMDs)提供了单层2D系统,其具有超出石墨烯单层所能实现的不同性质。TMDs的性质受到原子结构的严重影响,特别是结晶度的不完善,表现为空位缺陷、晶界、裂纹、杂质掺杂剂、波纹和边缘终端。牛津大学的Jamie H. Warner(通讯作者)等人通过本文总结了一些最深入研究的2D TMDs的详细结构形式,例如MoS2, WSe2, MoTe2, WTe2, NbSe2, PtSe2,还将涵盖MXenes。同时该综述将利用最新的球差校正透射电子显微镜(包括环形暗场扫描透射电子显微镜(ADF - STEM)和电子能量损失光谱(EELS) )所获得的结果,展示如何实现元素辨别,以深入理解结构。综述还将涉及单原子取代掺杂剂如Cr、V和Mn的影响,以及用于理解局部键合构型的电子能量损失谱。预计这一综述将提供2D TMDs的原子水平理解,与化学气相沉积合成、有意掺杂、撕裂、位错、应变、多晶化和限制纳米带所产生的缺陷有关。 文献链接:Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides(Chem. Soc. Rev., 2018, DOI: 10.1039/C8CS00236C) 7. Accounts of Chemical Research: 电化学沉积:模板合成纳米多孔金属结构的先进方法 昆士兰大学的Jeonghun Kim和Yusuke Yamauchi(共同通讯)等人近日综述了通过使用硬模板(即多孔二氧化硅、聚合物和二氧化硅胶体的3D模板)和软模板(即溶致液晶、聚合物胶束)的电化学沉积方法设计的纳米多孔金属领域取得的显著进展。此外,作者指出它是如何精确控制晶体生长的,并描述这些新材料的独特物理和化学性质。到目前为止,作者团队已经报道了通过电化学沉积在各种条件下合成多种纳米多孔金属和合金的成果(例如Cu、Ru、Rh、Pd、Pt、Au及其相应的合金),同时研究了它们的各种潜在应用。通过选择合适的表面活性剂或嵌段共聚物,可以容易地控制通道结构、组成和纳米孔的取向。最终产物的固有性质,例如骨架结晶度、催化活性和抗氧化性,取决于组成和孔结构,这又需要合适的电化学条件。这一叙述分为三个主要部分: ( I )使用硬模板和软模板的电化学沉积的历史,( ii )纳米多孔材料制备所涉及的重要机制的描述,以及( iii )结论和未来展望。作者相信,这一综述将促进对使用电化学沉积方法合成纳米多孔金属的更深入理解,从而使控制纳米多孔结构和优化其性能的新路径朝着有希望的应用方向发展,例如催化、能量存储、传感器等。 文献链接:Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures(Acc. Chem. Res., 2018, DOI: 10.1021/acs.accounts.8b00119)