《首次!我国太阳能电池领域取得突破性进展》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-10-30
  • 通过串联宽、窄带隙钙钛矿子电池构筑的全钙钛矿叠层太阳能电池,兼备高效率和低成本等优点,是下一代光伏技术的重要发展方向。

    10月28日,记者从南京大学获悉,该校助理教授林仁兴、教授谭海仁团队设计了一种基于偶极钝化策略制备的全钙钛矿叠层太阳能电池,该电池经国际权威机构日本电气安全和环境技术实验室认证后发现,光电转换效率高达30.1%,这是多晶薄膜太阳能电池光电转化效率首次超过30%,该结果被收录到《太阳能电池效率表》。相关成果10月28日发表于国际学术期刊《自然》。

    论文的第一作者兼通讯作者、南京大学助理教授林仁兴表示,该钝化策略加速了新型钙钛矿光伏技术从实验室走向产业的进程,对光伏技术构建“平价电网”具有重要推进作用。

  • 原文来源:https://www.cnenergynews.cn/news/2025/10/29/detail_20251029243373.html
相关报告
  • 《突破 | 柔性有机太阳能电池领域取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-04-27
    • 近日,《美国化学会志》(Journal of the American Chemical Society)以“Realizing 17.5% Efficiency Flexible Organic Solar Cellsvia Atomic-Level Chemical Welding of Silver Nanowire Electrodes”为题(DOI:10.1021/jacs.2c01503),在线报道了苏州大学李耀文教授在可印刷银纳米线柔性透明电极(FTE)可控生长及高效柔性有机太阳能电池(FOSCs)构筑取得的重要研究进展。 近年来,FOSCs因其质量轻、可溶液加工、具有可弯曲性等优点引起了科研工作者的广泛关注,并获得了飞速发展。然而,FOSCs的效率较基于玻璃基底制备的刚性电池仍有较大差距,主要原因是基于塑料基底制备的柔性透明电极在面电阻、透过率及可加工性等方面受到了局限。银纳米线(AgNWs)作为新一代高导电率、高透过率、耐弯折的材料已被广泛的应用于柔性电子设备的柔性电极中。但是由于溶液加工的AgNWs之间较差的接触以及与基底之间较弱的粘附力,使得FTE通常表现出较高的粗糙度和较差的导电及机械性能,严重影响了FOSCs的器件性能。基于此,苏州大学李耀文教授等人针对上述问题,提出了“可控还原—化学焊接”策略,通过向银纳米线溶液中引入具有还原性的离子液体(图1a)和硝酸银并与嵌有银纳米线(Em-Ag)的聚对苯二甲酸乙二醇酯(PET)基底相结合,使被还原的银以孪晶生长方式焊接在AgNWs的结点,实现AgNWs和还原银之间原子级接触。这有助于在不牺牲光学透过率的情况下增强AgNWs的物理/电学接触,提高FTE的机械性能和导电性能。基于该FTE制备的FOSCs实现了效率的大幅度提升,以PM6:BTP-eC9:PC71BM为活性层的小面积器件(0.062 cm2)效率达到了17.52%。重要的是,这种FTE的制备方法适用于大尺寸印刷,采用刮涂方法制备的1 cm2 FOSCs的PCE高达15.82%。 图1. (a)离子液体的结构式;(b-c)不同反应时间析出物的照片和XRD谱图,其中*和#分别为AgCl和Ag的特征峰;(d) PET/Em-Ag/AgNWs-IL FTE的SEM图像:白色框表示部分嵌入在PET衬底上的AgNWs,黄色框表示在AgNWs的结点处形成的颗粒 图2 (a)AgNWs结点FIB切割过程示意图;(b)AgNW结点的透射电镜剖面图和(c)EDS图谱;(d)图2b中标记区域1的透射电镜截面放大图像;(e)左:图2b中标记区域2的透射电镜截面放大图像;右:所选区域的HR-TEM图像 图3.(a)制备AgNWs FTE流程示意图;(b)Em-Ag/AgNWs-IL FTE(不含衬底)在不同浓度离子液体时的方块电阻、电导率和(c)透过光谱。附图: FTE在10 cm × 10 cm尺度下的照片;(d)FTE的FoM值 图4. (a)FOSCs结构示意图以及给体PM6与受体Y6、BTP-eC9和PC71BM的分子结构;(b)小面积FOSCs的J-V曲线;(c)大面积柔性透明电极透过率及面电阻均一性;(d)1cm2 FOSCs的J-V曲线;(e)FOSCs效率统计分布图 图5.(a)PET/Em-Ag/AgNWs和PET/Em-Ag/AgNWs-ILFTE的方块电阻随弯曲次数增加的变化趋势。插图:弯曲试验示意图;(b)PET/Em-Ag/AgNWs和PET/Em-Ag/AgNWs-IL FTE在剥离力作用下方块电阻的变化。插图:剥离试验示意图;(c)0.062-cm2 FOSCs经过6000次弯曲之后的PCE衰减;(d)0.062-cm2 FOSCs在1200次不同弯曲半径下弯曲循环后的相对PCE衰减;(e)1-cm2 FOSCs经过6000次弯曲的PCE衰减过程。插图: FOSCs在弯曲时的照片 综上所述,该工作在AgNWs结点实现了Ag+的可控还原,银纳米线与被还原银颗粒之间获得了原子级别的物理接触,在银纳米线间形成了“银纳米线—还原银—银纳米线”导电通道,制备的FTE同时具有高的电导率和透光率。相关研究工作对于推动高性能银纳米线电极的商业化有重要的意义,并有望进一步促进高性能、大面积柔性光电器件的发展。
  • 《我国科学家在钙钛矿太阳能电池领域取得重要突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-18
    • 钙钛矿太阳能电池以其制备简单、成本低和效率高的优势在新型光伏技术领域迅速崛起。钙钛矿太阳能电池按照器件结构可分为正式和反式两种结构,相比于正式结构,反式结构器件因制备工艺更加简单、可低温成膜、无明显回滞效应、适合与传统太阳能电池(硅基电池、铜铟镓硒等)结合制备叠层器件等优点,受到学术界和产业界的关注。但仍然存在开路电压与理论值差距较大、光电转换效率仍然偏低等应用瓶颈。 在纳米研究国家重大科学研究计划(2015CB932200,钙钛矿型太阳电池的基础研究)的支持下,北京大学朱瑞研究员、龚旗煌院士与合作者展开研究,针对反式结构钙钛矿太阳能电池在光电转换效率上存在的瓶颈,提出了“胍盐辅助二次生长”方法,开创性地实现了钙钛矿薄膜半导体特性的调控,显著降低了器件中非辐射复合的能量损失,在提升器件开路电压方面取得了突破,首次在反式结构器件中获得了超过1.21V的高开路电压(材料带隙宽度~1.6eV)。同时,在不损失光电流和填充因子等性能参数的情况下,显著提高了反式结构钙钛矿电池的光电转换效率—实验室最高效率达到21.51%。经中国计量科学研究院认证,器件的光电转换效率高达20.90%,是目前反式结构钙钛矿太阳能电池器件效率的最高记录。该结果为提升反式钙钛矿太阳能电池器件效率、推进该类新型光伏器件的应用化发展提供了新思路,可进一步拓展到钙钛矿叠层太阳能电池以及钙钛矿发光器件中,具有潜在的应用前景和商业价值。相关成果6月29日在线发表在《科学》杂志上。