《新型茎锈病菌危害欧洲小麦》

  • 来源专题:农业立体污染防治
  • 编译者: 金慧敏
  • 发布时间:2017-02-27
  • 丹麦奥胡思大学全球锈病中心(GRRC)与总部设在墨西哥特斯科科州的国际玉米和小麦改良中心(CIMMYT)研究专家在2月2日发布报告称已经证实一种茎锈病TTTTF的存在。感染该病毒后,小麦的茎和叶会呈现出特有的褐色,该病害以此命名。这种非常具有毁灭性的新型真菌菌株,很可能已传播至世界最大的小麦产区——欧洲,甚至感染了今年将要收割的庄稼。

    GRRC进行的测试显示了这种病菌能感染数十种实验室培育的小麦,包括一些不容易感染疾病的耐寒品种。该团队还在研究经济作物是否容易被感染。更令人担忧的是能够引发另一麦类病害黄锈病的两种新菌株,一种在欧洲和北非,另一种在东非和中亚。该菌株首次被发现便已经感染了大面积农作物。联合国粮食和农业组织(FAO) 在2月3日发布了关于以上三种病害的类似警告。植物育种家也开始加大力度研制抗菌品种。

    由吉利甘(Gilligan)领导的剑桥大学、CIMMYT与英国气象局的研究团队,进行了基于风和气候模式的模型实验。实验结论显示在西西里岛爆发的病害中茎锈病菌孢子,极大可能已经遍布整个地中海区域。不过,这并不意味着该病害会继续蔓延,因为真菌孢子可能活不过冬天,但这些随风散落沉积各处的病原袍子已足够让研究人员提升警报等级了。研究人员计划在未来数周内要求欧洲研究委员会建立一个早期预报体系。

相关报告
  • 《印度科学家解析小麦锈病病菌基因组》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:李楠
    • 发布时间:2017-11-28
    • 小麦是世界超过一半人口的主粮,在印度也是保障粮食安全的重要作物。目前,小麦主要受到3种锈病的影响,包括条锈病、叶锈病、秆锈病,其中叶锈病的发生最为频繁,相比其他两种小麦锈病,叶锈病造成的经济损失更大。遭受严重病虫害时,如果不喷施农药,叶锈菌会导致作物产量损失超过50%。受小麦锈病的影响,印度小麦生产在1970年到1980年间出现了严重问题。之后,因培育出了抗锈品种,麦锈病得到了有效控制,但印度大多数抗锈品种具有小种专化抗性。此外,小麦叶锈菌自身还在不断衍生出新的种类和生物类型。因此,对于印度的小麦育种科学家和决策部门来说,小麦锈病防治仍然是农业领域的重要问题。 为了探究锈菌变异的分子机制,印度农业研究委员会国家植物生物技术研究中心(ICAR-NRCPB)主任T·R·沙玛博士(T. R. Sharma,新德里)联合印度农业研究委员会附属的3家机构以及两所国家农业大学,组织开展叶锈菌全新基因组测序项目。该项目的主要任务是解析相对稳定的小麦锈病菌(Puccinia triticina)Race 106和变异性很强的Race77及其13个生物类型所组成的基因组。小麦锈病菌Race 106于1930年首次发现后一直保存于印度西姆拉,在过去的85年来未发生变异;而Race77于1954年发现于印度比哈尔,之后变异为13种类型。 最终,T·R·沙玛博士带领的科研团队应用454 GSFLX platform解析了小麦叶锈病菌的15种基因组(共计约1500 Mb数据量)。其中Race 77序列为3.41Gb(测序深度33 X ),包括27678个蛋白编码基因(1129 bp)。Race 106序列为2.91 Gb(测序深度27X),包含26384个蛋白编码基因(1086 bp)。Race77和Race106中的重复序列分别达37.49 %和39.99%。此外,在重复性片段(segmental duplication, SD)、重复序列和SNP/InDel方面,Race77与Race106均不同。其中Race 77基因组的某些区域对基因重组非常敏感,这使得Race 77变异性很强。该研究侧重于基因组结构、组织、变异和锈病菌致病性的分子机理等方面的研究,对推动印度小麦改良进程具有里程碑式的意义。该研究论文已发表在国际期刊《Genome Biology and Evolution》。 由ICAR-NRCPB主持完成的小麦锈病病菌基因组项目得到了印度生物技术部(Department of Biotechnology)的资助。参与项目的三个ICAR机构分别是:位于新德里的国家植物生物技术研究中心(National Research Centre on Plant Biotechnology)、位于西姆拉的印度小麦与大麦研究所(Indian Institute of Wheat and Barley Research)Flowerdale中心,以及印度农业研究所(Indian Agricultural Research Institute)。参与项目的两所国立大学分别是:位于哥印拜陀市的卢迪亚纳&泰米尔纳德农业大学以及旁遮普农业大学。 值得一提的是,在各种国际和国家层面的基因组测序项目的推动下,ICAR-NRCPB已经成功解析了水稻、番茄、木豆、小麦和芒果等作物的完整基因组序列,这些研究成果为作物育种学家深入开展作物改良研究奠定了基础。 (编译 李楠)
  • 《欧洲能源研究联盟发布核能材料战略研究议程》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-08-05
    • 近期,欧洲能源研究联盟(EERA)发布《可持续核能材料战略研究议程》 ,确定了欧盟将要开展的核能材料研究路线,以确保为欧盟第四代核反应堆的设计、许可、建设和安全长期运行提供合适的结构材料和燃料材料,促进第四代核反应堆的商业部署。本次议程提出了重点开展结构材料和燃料材料两个主题研究,具体内容如下: 一、反应堆结构材料研究 1、材料的性能机理研究 (1)金属材料的高温力学行为和性能衰退研究:实验和模拟结合研究金属材料(奥氏体钢、马氏体铁素体双相钢、镍基合金等)的高温蠕变特性,分析材料的蠕变机制,金属材料的循环塑性和疲劳测试研究,并收集相关实验数据;开展金属材料的蠕变-疲劳损伤及断裂机制分析;金属材料高温强度研究。 (2)冷却剂和结构材料的环境匹配性研究:针对液态金属(如奥氏体钢)冷却,开展液态金属的腐蚀核防护技术研究;液态金属脆裂失效机制研究。 (3)结构材料辐射效应:针对结构材料的辐射损伤问题如辐照肿胀与蠕变现象、辐照硬化与脆化、辐照疲劳与蠕变相互作用等开展系统研究,以研究出相关的防护技术提升材料的使用寿命。 (4)焊接件质量评估:研究焊接件在反应堆的温度、压力和强辐照条件下的稳定性和相容性问题,提升焊接工艺,改进焊接质量。 2、先进结构材料的模型和表征 (1)结构材料的微结构和微化学演变研究:对高温高压高辐射环境下材料的微观组织、结构变化过程(如辐射硬化和脆化、辐射诱导的材料组分分离和沉积等)进行表征和研究。 (2)辐照后的材料机械行为研究:利用高能离子束模拟研究,了解和预测辐射损伤诱发的结构材料物理机械性能下降(如循环塑性和疲劳、蠕变-疲劳损伤相互作用)的复杂机械行为。 (3)材料断裂机理研究:开发计算机模型,动态拟合材料断裂整个过程,探究材料起裂、裂缝传播作用机理。 (4)陶瓷/复合材料性能研究:利用先进的成像和计算机模拟技术对反应堆使用的陶瓷材料/复合材料的耐高温、耐腐蚀、耐辐射的物理化学特性进行测试研究。 3、先进结构材料研发 (1)结构材料制备工艺:开发更加高效、简洁、经济的结构材料制备工艺(如可以引入3D打印技术),减少材料的制造周期和成本。 (2)奥氏体钢性能改善:通过添加少量的添加剂,减少点缺陷,开发出辐照肿胀和热膨胀系数更低的奥氏体钢,降低材料的抗辐照肿胀性。 (3)马氏体铁素体双相钢(F/M钢):开发新的制备工艺,制造出具备耐高温、良好的抗辐照肿胀性的氧化物弥散强化F/M钢;开发新的氧化物弥散强化F/M钢焊接工艺;研发新的防氚渗透耐蚀绝缘涂层材料。 (4)SiC核包壳材料的开发和性能分析:开发高性能的SiC核包壳材料,发展标准化的测试手段(如利用扫描电镜、透射电镜、热导率表征手段等)来研究中子辐照SiC核包壳材料缺陷分析;探究材料的抗高温氧化性能和抗腐蚀性。 (5)耐火合金材料:研发新的Mo元素掺杂的V-Cr-Ti合金熔炼制备技术,提升材料的高温强度(耐火性)、抗中子辐照肿胀、耐腐蚀特性等。 (6)新型核结构材料:研发新型、能够抵抗更高温度和更大辐照剂量的多元高熵合金材料,探索不同元素组合对材料性能的影响;通过对材料组分和材料微结构的调控,改善新型MAX相结构材料(即新型三元陶瓷材料)的耐腐蚀、抗辐照和耐高温性能。 二、反应堆燃料材料研究 1、材料性能机理研究 (1)高熔点核燃料材料:开发熔点更高、物理化学性质稳定的新型燃料棒材料,提升安全裕度。 (2)原子传输和微结构演化研究:探究辐照环境下,核燃料点缺陷的形成、扩散行为机理研究;探究在核反应堆环境中材料微结构的演变规律,及其对结构稳定性、力学性能特性影响。 (3)裂变产物研究:针对反应堆本体一回路裂变产物(如氦、氪、氙等放射性气体以及其他放射性微粒等)开展产物的微观行为的多尺度研究,探明裂变产物的微观行为机制; (4)核燃料包壳相互作用研究:由于包壳面临核燃料芯体,包壳内壁受到裂变气体压力、腐蚀和燃料肿胀以及吸氢致脆等包壳与芯块的相互作用等危害,任其发展可导致包壳破损,引起安全问题,因此需要对此开展研究,探索解决方案。 2、核燃料材料的模型和表征 (1)核燃料熔点研究:利用激光加热手段来研究不同组分对核燃料熔点的影响;用量热法研究各种非化学计量比的燃料样品的熔点;利用仿真模拟方法从原子尺度计算不同组分对材料熔点的影响。 (2)辐射缺陷和原子输运:综合利用各类表征手段,如量热法、电导率测试、拉曼光谱等,研究各种非化学计量比核燃料材料辐照点缺陷形成和扩散机理研究;利用仿真模拟方法从原子尺度计算不同组分对材料辐射缺陷形成的影响。通过热量测试,研究辐照增强扩散效应的研究。 (3)裂变产物研究:通过热量测试,对不同组分核燃料裂变产物(如氦、氪、氙等放射性气体以及其他放射性微粒等)的辐照增强扩散行为进行研究;开发相关的仿真模型研究裂变产物的热力学行为。 (4)机械特性研究:开发相关仿真模型从原子尺度研究辐照肿胀和蠕变对材料机械性能的影响,并开展相关的实验研究。 3、先进核燃料材料开发 (1)氧化物核燃料:开发新工艺,通过组分调控优化进而实现对微结构的调控,制备高性能的钚铀混合氧化物核燃料,提高资源的利用率,解决核燃料资源不足的问题。 (2)新型燃料开发:开发新型的氮化、碳化铀系核燃料,并通过完整的物理、化学、机械等测试手段对新材料性能进行全面的表征。研究新燃料和包壳及冷却剂之间的相互作用。开发热化学模型,研究核燃料氧化机制。关注熔盐反应堆,开发新型熔盐以更有效地加载核燃料和发挥冷却效果(熔盐自身既是加载核燃料的载体,同时也是冷却剂)。