《【中国新闻网】中国科学家研究揭示灵长类动物发育和寿命调控的关键通路》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2018-10-17
  •         中国科学院8月23日发布消息称,该院动物研究所和生物物理研究所的研究团队通过联合攻关,首次实现被认为是经典“长寿蛋白”的SIRT6在非人灵长类动物中的全身敲除,获得世界上首例特定长寿基因敲除的食蟹猴模型,并进一步研究揭示出灵长类动物发育和寿命调控的关键通路。

      中国科学家完成的这一突破性研究成果,北京时间23日凌晨获国际权威学术期刊《自然》(《Nature》)在线发表。

      专家指出,该研究首次结合非人灵长类动物模型、人类干细胞模型及基因编辑技术揭示了可调控灵长类动物出生前发育程序的关键分子开关,为研究人类出生前发育迟缓综合征提供了重要的模型体系。此外,该研究首次揭示了灵长类和啮齿类动物在衰老调节通路方面的巨大差异,为开展人类发育和衰老的机制研究,以及相关疾病的干预奠定了重要的基础。

      据介绍,1999年,科学家就发现Sir2基因具有延长酿酒酵母寿命的作用,因此称其为“长寿基因”。在啮齿类动物中,Sir2的同源基因SIRT6也被认为参与了衰老及寿命的调控——过量表达SIRT6能够延长雄性小鼠的寿命,而敲除SIRT6则会使小鼠表现出脊柱弯曲、骨质疏松、肠道上皮受损、端粒缩短等加速衰老的表型,且小鼠寿命缩短至约1个月。

      由于SIRT6在功能上链接着表观遗传稳态、基因组稳定性和代谢调控,因此SIRT6被认为是经典的“长寿蛋白”,并成为人们试图延缓衰老的重要靶标。然而,迄今为止几乎所有SIRT6作为“长寿蛋白”的证据均来源于小鼠和其他低等模式生物,SIRT6能否在灵长类动物中发挥类似的功能尚不清楚。

      对此,中国科学院动物所和生物物理所联合团队历时3年的研究发现,与SIRT6敲除小鼠表现的加速衰老表型明显不同,SIRT6敲除的食蟹猴在出生数小时内即死亡。多项分析结果显示,SIRT6敲除的食蟹猴未见加速衰老表型,却表现出严重的全身发育迟缓。新生SIRT6敲除猴的脑、肌肉及多种其他器官组织均表现出明显的胚胎期未成熟的细胞和分子特征。

      与此同时,联合团队利用人类干细胞模型开展的研究表明,SIRT6缺乏也可阻滞人类神经干细胞向神经元的分化。进一步的分子机制研究发现,SIRT6可以通过介导长链非编码核糖核酸H19印记调控区的组蛋白去乙酰化来反式抑制H19的表达,而SIRT6的缺乏则会在灵长类动物神经前体细胞中引起H19表达的异常上调,进而导致脑发育迟缓。

      据了解,这项研究工作得到了中国科学院“器官重建与制造”战略科技先导专项等资助支持,首都医科大学宣武医院、北京大学附属第一医院和中山大学等也参与合作。

相关报告
  • 《美国科学家揭示作物抗旱的关键分子机制》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:李楠
    • 发布时间:2017-11-28
    • 气候变化会使旱灾频发,威胁农作物的生长。保护农作物的一种潜在方法是通过对作物喷洒某种化合物,来提高作物的抗旱性。目前,伊利诺伊大学(University of Illinois)的研究者们发现了一种使作物减少水分流失的关键分子机理 ,该发现为科学家找到合适的作物抗旱化合物奠定了基础。 面对干旱的气候条件,植物的自然抵御力会增强。它们会产生植物激素——脱落酸(ABA)附着在一种称之为PYL受体的蛋白质上,从而引发一系列反应,最终促使植物叶片上的气孔关闭。伊利诺伊大学(University of Illinois)的研究人员萨拉·沙卡拉(Saurabh Shukla)解释称:“这样一来,植物便可以减少甚至是完全不流失任何水分,从而可以保持水分,延长寿命。”其中最为关键的就是植物激素ABA,但由于ABA稳定性较弱且分子结构比较复杂,所以不能直接喷洒在农田里。不过,沙卡拉指出,“如果我们能够了解这种植物激素的工作机理,就可以设计出一些具备相同机理的分子为我们服务。”科学家如果能找到一种既具备相同机理,又廉价、稳定且环保的激素,那么农民就可以利用它提高农作物的抗旱性。 但是要弄清楚ABA的具体工作机理并非易事。诸如X射线衍射等实验室技术虽然能够记录下ABA附着到PYL受体前后的状态,但却无法捕捉到附着前后的瞬间。因此,沙卡拉和同事们通过使用分子动态模拟器,观察到了ABA是如何落在PYL受体的具体细节。模拟器一帧一帧地显示了ABA是在何处、以何种方式与蛋白质结合,使其改变形状,从而使序列当中的下一个蛋白质被激活,最终促使植物叶片上的气孔关闭的全过程。最后几帧中ABA落到受体上,这与X射线衍射技术所预测的晶体结构完全一致,再次验证了模拟器的准确性。2017年2月11日至15日,在新奥尔良举办的第61届生物物理学学会会议上(the 61st Meeting of the Biophysical Society),该项目的研究团队展示了这项成果。 研究者称他们只模拟了两种特定类型的PYL受体,均是在拟南芥(A. thaliana)中发现的。沙卡拉称,由于绝大多数物种的PYL受体的结构都比较相似,因此他们的研究成果具有广泛的适用性。对于已知晶体结构的PYL受体,它们同ABA结合的蛋白质部分相同,结合处周围的结构也相似,这样的相似性意味绝大多数植物中都有相同的结合机制。 沙卡拉指出,研究者们会继续在其他植物当中验证这种机制,例如,水稻的PYL受体结构是已知的,因此可以去探索水稻中类似ABA的激素。研究者需要进行严密的计算和基因研究来识别这种化合物,他们的目标是不需要依靠基因工程便可以找到一种适用于所有物种的化合物。但是要让这种化合物产品出现在市场上,至少还需要10年的时间。 (编译 李楠)
  • 《中国科学家揭示冠状病毒核酸内切酶nsp15调控宿主蛋白翻译的新机制》

    • 编译者:李周晶
    • 发布时间:2025-08-22
    • 中国农业科学院上海兽医研究所家禽病毒病监测预警和防控团队首次系统阐明了冠状病毒核酸内切酶nsp15调控宿主蛋白翻译系统的分子机制,为深入理解冠状病毒劫持宿主细胞翻译机器提供了全新视角。相关研究成果发表在国际病原学权威期刊《PLOS Pathogens》上。 Nsp15作为冠状病毒特有的保守蛋白,具有核糖核酸内切酶(EndoU)活性。既往研究表明,该蛋白可通过剪切病毒复制产生的负链RNA,减少病毒双链RNA(dsRNA)积累,在病毒复制转录和免疫逃逸中发挥关键作用。团队前期研究发现,nsp15能通过降解病毒dsRNA,抑制PKR-eIF2α信号通路激活,进而干扰抗病毒应激颗粒形成(PLOS Pathogens, 2021)。然而,nsp15与宿主细胞的互作网络及其功能机制仍有待阐明。 该研究发现来自四个冠状病毒属的nsp15均能显著抑制宿主蛋白合成,并诱导多聚腺苷酸结合蛋白PABPC1发生核滞留,且这一过程严格依赖其EndoU酶活性。Nsp15特异性结合病毒RNA、237种宿主RNA、809个宿主蛋白,其中宿主RNA编码的蛋白以及809个互作蛋白显著富集于核糖体生物发生、RNA加工和翻译调控等通路。这些发现揭示了nsp15靶向宿主RNA和蛋白,干扰宿主蛋白翻译过程。 以传染性支气管炎病毒(IBV)为模型,进一步解析nsp15在感染过程中的动态调控机制,发现野生型IBV凭借功能性nsp15有效控制病毒dsRNA积累,以不依赖PKR-eIF2α通路的方式抑制宿主蛋白翻译,同时维持PABPC1的胞质定位;EndoU活性缺陷突变株rIBV-nsp15-H238A则导致病毒dsRNA异常积累,激活PKR-eIF2α通路介导的翻译关闭,并引发PABPC1核转位,不利于病毒蛋白翻译;在PKR-eIF2α通路缺失条件下,野生型IBV仍保持翻译抑制能力,而突变株的抑制作用显著减弱。以上结果证实nsp15具有独立于PKR-eIF2α通路的翻译调控功能,且通过减少dsRNA的积累,帮助病毒规避了不利于其复制的PKR-eIF2α通路。 该研究创新性地揭示了nsp15在冠状病毒感染中的双重调控机制:一方面通过调控病毒dsRNA水平,避免激活对病毒蛋白翻译有害的PKR-eIF2α通路;另一方面通过靶向宿主RNA和蛋白质网络,特异性抑制宿主蛋白翻译系统。这些发现不仅阐明了nsp15介导的宿主翻译关闭这一保守机制,更为理解冠状病毒高效利用宿主资源的分子基础提供了重要理论依据。