《bioRxiv,6月14日,Single-cell screening of SARS-CoV-2 target cells in pets, livestock, poultry and wildlife》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-06-19
  • Single-cell screening of SARS-CoV-2 target cells in pets, livestock, poultry and wildlife

    Dongsheng Chen, Jian Sun, Jiacheng Zhu, Xiangning Ding, Tianming Lan, Linnan Zhu, Rong Xiang, Peiwen Ding, Haoyu Wang, Xiaoling Wang, Weiying Wu, Jiaying Qiu, Shiyou Wang, Haimeng Li, Fuyu An, Heng Bao, Le Zhang, Lei Han, Yixin Zhu, Xiran Wang, Feiyue Wang, Yuting Yuan, Wendi Wu, Chengcheng Sun, Haorong Lu, Jihong Wu, Xinghuai Sun, Shenghai Zhang, Sunil Kumar Sahu, Haixia Chen, Dongming Fang, Lihua Luo, Yuying Zeng, Yiquan Wu, ZeHua Cui, Qian He, Sanjie Jiang, Xiaoyan Ma, Weimin Feng, Yan Xu, Fang Li, Zhongmin Liu, Lei Chen, Fang Chen, Xin Jin, Wei Qiu, Huanming Yang, Jian Wang, Yan Hua, Yahong Liu, Huan Liu, Xun Xu

    doi: https://doi.org/10.1101/2020.06.13.149690

    Abstract

    A few animals have been suspected to be intermediate hosts of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a large-scale single-cell screening of SARS-CoV-2 target cells on a wide variety of animals is missing. Here, we constructed the single-cell atlas for 11 representative species in pets, livestock, poultry, and wildlife. Notably, the proportion of SARS-CoV-2 target cells in cat was found considerably higher than other species we investigated and SARS-CoV-2 target cells were detected in multiple cell types of domestic pig, implying the necessity to carefully evaluate the risk of cats during the current COVID-19 pandemic and keep pigs under surveillance for the possibility of becoming intermediate hosts in future coronavirus outbreak. Furthermore, we screened the expression patterns of receptors for 144 viruses, resulting in a comprehensive atlas of virus target cells. Taken together, our work provides a novel and fundamental strategy to screen virus target cells and susceptible species, based on single-cell transcriptomes we generated for domesticated animals and wildlife, which could function as a valuable resource for controlling current pandemics and serve as an early warning system for coping with future infectious disease threats.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.06.13.149690v1
相关报告
  • 《bioRxiv,6月13日,Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4+ T cells》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-06-14
    • Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4+ T cells Benjamin J Meckiff, Ciro Ramirez-Suastegui, Vicente Fajardo, Serena J Chee, Anthony Kusnadi, Hayley Simon, Alba Grifoni, Emanuela Pelosi, Daniela Weiskopf, Alessandro Sette, Ferhat Ay, Gregory Seumois, Christian Ottensmeier, Pandurangan Vijayanand doi: https://doi.org/10.1101/2020.06.12.148916 Abstract The contribution of CD4+ T cells to protective or pathogenic immune responses to SARS-CoV-2 infection remains unknown. Here, we present large-scale single-cell transcriptomic analysis of viral antigen-reactive CD4+ T cells from 32 COVID-19 patients. In patients with severe disease compared to mild disease, we found increased proportions of cytotoxic follicular helper (TFH) cells and cytotoxic T helper cells (CD4-CTLs) responding to SARS-CoV-2, and reduced proportion of SARS-CoV-2 reactive regulatory T cells. Importantly, the CD4-CTLs were highly enriched for the expression of transcripts encoding chemokines that are involved in the recruitment of myeloid cells and dendritic cells to the sites of viral infection. Polyfunctional T helper (TH)1 cells and TH17 cell subsets were underrepresented in the repertoire of SARS-CoV-2-reactive CD4+ T cells compared to influenza-reactive CD4+ T cells. Together, our analyses provide so far unprecedented insights into the gene expression patterns of SARS-CoV-2 reactive CD4+ T cells in distinct disease severities.
  • 《bioRxiv,6月13日,Receptor utilization of angiotensin converting enzyme 2 (ACE2) indicates a narrower host range of SARS-CoV-2 than that of SARS-CoV》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-06-14
    • Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4+ T cells Benjamin J Meckiff, Ciro Ramirez-Suastegui, Vicente Fajardo, Serena J Chee, Anthony Kusnadi, Hayley Simon, Alba Grifoni, Emanuela Pelosi, Daniela Weiskopf, Alessandro Sette, Ferhat Ay, Gregory Seumois, Christian Ottensmeier, Pandurangan Vijayanand doi: https://doi.org/10.1101/2020.06.12.148916 Abstract The contribution of CD4+ T cells to protective or pathogenic immune responses to SARS-CoV-2 infection remains unknown. Here, we present large-scale single-cell transcriptomic analysis of viral antigen-reactive CD4+ T cells from 32 COVID-19 patients. In patients with severe disease compared to mild disease, we found increased proportions of cytotoxic follicular helper (TFH) cells and cytotoxic T helper cells (CD4-CTLs) responding to SARS-CoV-2, and reduced proportion of SARS-CoV-2 reactive regulatory T cells. Importantly, the CD4-CTLs were highly enriched for the expression of transcripts encoding chemokines that are involved in the recruitment of myeloid cells and dendritic cells to the sites of viral infection. Polyfunctional T helper (TH)1 cells and TH17 cell subsets were underrepresented in the repertoire of SARS-CoV-2-reactive CD4+ T cells compared to influenza-reactive CD4+ T cells. Together, our analyses provide so far unprecedented insights into the gene expression patterns of SARS-CoV-2 reactive CD4+ T cells in distinct disease severities.