《bioRxiv,6月13日,Receptor utilization of angiotensin converting enzyme 2 (ACE2) indicates a narrower host range of SARS-CoV-2 than that of SARS-CoV》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-06-14
  • Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4+ T cells

    Benjamin J Meckiff, Ciro Ramirez-Suastegui, Vicente Fajardo, Serena J Chee, Anthony Kusnadi, Hayley Simon, Alba Grifoni, Emanuela Pelosi, Daniela Weiskopf, Alessandro Sette, Ferhat Ay, Gregory Seumois, Christian Ottensmeier, Pandurangan Vijayanand

    doi: https://doi.org/10.1101/2020.06.12.148916

    Abstract

    The contribution of CD4+ T cells to protective or pathogenic immune responses to SARS-CoV-2 infection remains unknown. Here, we present large-scale single-cell transcriptomic analysis of viral antigen-reactive CD4+ T cells from 32 COVID-19 patients. In patients with severe disease compared to mild disease, we found increased proportions of cytotoxic follicular helper (TFH) cells and cytotoxic T helper cells (CD4-CTLs) responding to SARS-CoV-2, and reduced proportion of SARS-CoV-2 reactive regulatory T cells. Importantly, the CD4-CTLs were highly enriched for the expression of transcripts encoding chemokines that are involved in the recruitment of myeloid cells and dendritic cells to the sites of viral infection. Polyfunctional T helper (TH)1 cells and TH17 cell subsets were underrepresented in the repertoire of SARS-CoV-2-reactive CD4+ T cells compared to influenza-reactive CD4+ T cells. Together, our analyses provide so far unprecedented insights into the gene expression patterns of SARS-CoV-2 reactive CD4+ T cells in distinct disease severities.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.06.13.149930v1
相关报告
  • 《MICROBES INFECT,3月19日,Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-20
    • Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2 YeQiu1Yuan-BoZhao1QiongWangJin-YanLiZhi-JianZhouCe-HengLiaoXing-YiGe Show more https://doi.org/10.1016/j.micinf.2020.03.003 Abstract SARS-CoV-2, the newly identified human coronavirus causing severe pneumonia epidemic, was probably originated from Chinese horseshoe bats. However, direct transmission of the virus from bats to humans is unlikely due to lack of direct contact, implying the existence of unknown intermediate hosts. Angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2s of certain species can be utilized by SARS-CoV-2. Here, we evaluated and ranked the receptor-utilizing capability of ACE2s from various species by phylogenetic clustering and sequence alignment with the currently known ACE2s utilized by SARS-CoV-2. As a result, we predicted that SARS-CoV-2 tends to utilize ACE2s of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2.
  • 《bioRxiv,6月6日,Synthetic Antibodies neutralize SARS-CoV-2 infection of mammalian cells》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-06-09
    • Synthetic Antibodies neutralize SARS-CoV-2 infection of mammalian cells Shane Miersch, Mart Ustav, Zhijie Li, James B. Case, Safder Ganaie, Giulia Matusali, Francesca Colavita, Daniele Lapa, Maria R. Capobianchi, View ORCID ProfileGuiseppe Novelli, Jang B. Gupta, Suresh Jain, Pier Paolo Pandolfi, Michael S. Diamond, Gaya Amarasinghe, James M. Rini, Sachdev S. Sidhu doi: https://doi.org/10.1101/2020.06.05.137349 Abstract Coronaviruses (CoV) are a large family of enveloped, RNA viruses that circulate in mammals and birds but have crossed the species barrier to infect humans seven times. Of these, three pathogenic strains have caused zoonotic infections in humans that result in severe respiratory syndromes including the Middle East Respiratory Syndrome (MERS-CoV), severe acute respiratory syndrome (SARS-CoV), and now SARS-CoV-2 coronaviruses, the latter of which is the cause of the ongoing pandemic of coronavirus disease 2019 (COVID-19). Here, we describe a panel of synthetic monoclonal antibodies, built on a human framework, that bind SARS-CoV-2 spike protein, compete for binding with ACE2, and potently inhibit infection by SARS-CoV-2. These antibodies were found to have a range of neutralization potencies against live virus infection in Vero E6 cells, potently inhibiting authentic SARS-CoV-2 virus at sub-nanomolar concentrations. These antibodies represent strong immunotherapeutic candidates for treatment of COVID-19. Competing Interest Statement S.S, P.P.P and S.J, are cofounders of Virna Therapeutics. The company is developing novel therapies for COVID-19 and other viruses.