《单细胞转录组学鉴定了小鼠皮肤过敏模型中从炎症单核细胞到促分解巨噬细胞的分化轨迹》

  • 来源专题:重大疾病防治
  • 编译者: 蒋君
  • 发布时间:2024-02-26
  • 单核细胞和巨噬细胞都是异质性群体。传统上认为,Ly6Chi经典(炎症)单核细胞分化为促炎性Ly6Chi巨噬细胞。越来越多的证据表明,在某些条件下,Ly6Chi经典单核细胞也可以分化为Ly6Clo前分解巨噬细胞,而其分化轨迹仍有待完全阐明。本研究采用scRNA-seq和流式细胞仪分析显示,被招募到过敏性皮肤病变的Ly6ChiPD-L2lo经典单核细胞以IL-4受体依赖的方式,通过中间Ly6ChiPD-L2hi巨噬细胞而不是Ly6Clo非经典单核核细胞,依次分化为Ly6CloPD-L2hi前分解巨噬细胞。在分化过程中,经典的单核细胞衍生的巨噬细胞表现出抗炎特征,随后进行代谢重组,这与它们吞噬凋亡中性粒细胞和过敏原的能力一致,因此有助于炎症的解决。这些促分解巨噬细胞的生成失败驱动了IL-1α介导的炎症循环,坏死的中性粒细胞聚集成脓肿样。因此,我们阐明了从Ly6Chi经典单核细胞向Ly6Clo前分解巨噬细胞的逐步分化轨迹,该巨噬细胞抑制皮肤过敏性炎症的中性粒细胞加重。
  • 原文来源:https://www.nature.com/articles/s41467-024-46148-4?error=cookies_not_supported&code=ec4f5ad5-4620-4f5e-9546-d404d82e313f
相关报告
  • 《Cell | FLT3L影响人类造血干细胞、单核细胞和树突状细胞分化》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-05-06
    • 2024年5月2日,Necker儿童疾病医院Vivien Béziat通讯在Cell发表题为FLT3L governs the development of partially overlapping hematopoietic lineages in humans and mice的文章,报道了一种新的免疫突变。该突变由编码FMS相关酪氨酸激酶3配体(FLT3L)的FLT3LG基因的双等位基因突变引起。这一发现揭示了FLT3L在人类造血和免疫系统中的关键作用,揭示了其FLT3L与小鼠公认功能的相似性和显著差异。 这项研究的重点是伊朗裔的同家族的三个兄弟姐妹,他们患有反复发作的病毒、细菌和真菌感染,包括由人乳头瘤病毒(HPV)引起的严重皮肤疣。全外显子组测序和遗传分析确定FLT3LG基因中的纯合移码缺失(p.Ser118Alafs*23)是其免疫缺陷的根本原因。通过全面的分子和功能分析,研究人员证明FLT3LG基因编码至少七种选择性剪接的转录物,其中两种产生功能异构体:膜结合的FLT3L(mFLT3L)和分泌型的FLT3L(sFLT3L)。值得注意的是,作者所鉴定的突变消除了两种亚型的表达和功能,导致患者完全缺乏FLT3L。与FLT3L在小鼠造血中的已知作用一致,患者表现出严重的骨髓发育不全、造血干细胞和祖细胞(HSPC)显著减少。此外,残留的HSPC显示出对巨核细胞和红细胞谱系的分化偏向,这表明在缺乏FLT3L信号的情况下沿着这些途径优先分化。 在FLT3L缺陷患者中观察到的最显著的表型之一是严重的单核细胞减少症,这在Flt3lg敲除小鼠中没有观察到。这一发现突出了FLT3L在人类单核细胞发育中的关键作用,而这一点以前并不被重视。此外,患者的血液、骨髓和皮肤中几乎完全没有树突状细胞(DC),这突出了FLT3L在DC分化中的重要作用,与在小鼠中的观察结果一致。有趣的是,与小鼠模型相比,患者表现出正常的T细胞分化和功能,以及接近正常的NK细胞发育,包括产生适应性NK细胞反应的能力。然而,B细胞分化严重受损,导致了复发性细菌感染——这是典型的B细胞缺乏症。 值得注意的是,尽管存在严重的免疫缺陷,但患者存活到成年(三位患者分别生于1989、1991和1995年),这可能是由于现代医疗的干预。这一发现表明,残留的造血细胞虽然数量减少并偏向特定谱系分化,但足以提供一定程度的免疫保护。该研究还揭示了FLT3L在皮肤免疫中的作用。虽然朗格汉斯细胞和真皮巨噬细胞以正常水平存在,但患者的真皮DC频率较低,这可能导致了他们对皮肤HPV感染的易感性。 总之,这项研究揭示了一种新的天然免疫突变,揭示了FLT3L在人类造血和免疫中不可或缺的作用。这些发现不仅扩展了我们对控制造血谱系发育的分子机制的理解,还强调了FLT3L在单核细胞和DC分化中的重要性,对包括HPV在内的各种病原体的免疫防御具有重要意义。这项研究为进一步探索FLT3L相关通路及其在免疫障碍和传染病中的治疗潜力铺平了道路。
  • 《分子细胞卓越中心等研究揭示炎症信号通过诱导肝细胞去分化促进肝脏再生》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-18
    • 2月13日,中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员惠利健研究组与上海营养与健康研究所研究员李虹研究组和研究员李亦学研究组合作,以Kupffer cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers为题,在Cell Stem Cell上在线发表研究论文。这项机制研究揭示肝脏损伤下,驻留Kupffer细胞分泌的炎症信号IL-6诱导肝细胞的去分化并表达前体基因。信号转导机制上,IL-6是损伤特异的信号,该信号通过肝细胞表达的受体IL6R/gp130能直接激活肝细胞STAT3信号通路诱导肝细胞去分化。转录调控机制上,STAT3作为转录因子能结合在损伤特异的增强子上,促进了肝前体基因的表达。由于IL6/STAT3在胚胎发育中不表达,而且重编程相关基因活化位点与发育过程完全不同,表明这是损伤特异而非发育相关的转录调控机制。   组织再生过程中新生细胞的来源主要分为两种,一种是来自于成体干细胞自我扩增并分化,另一种是来自于原先存在的已分化的细胞。在后者相关的研究领域发现,已分化的细胞可以经历去分化或者重编程的过程贡献组织的再生,并且在多个组织中都有发现,例如肺、小肠、胰腺和肝脏。在肝脏的损伤再生过程中,已有研究表明,成熟肝细胞的去分化过程是肝细胞重要来源之一。肝脏损伤下成熟肝细胞能发生去分化过程,转变成Sox9+类肝前体细胞(Liver progenitor-like cells, LPLCs)贡献肝脏内细胞的来源。   科研团队2019年发表于Cell Stem Cell的论文证明,肝细胞具重编程能力的内在特性受到Arid1a调控,Arid1a预先开放了成熟肝细胞中重编程相关基因(Reprogramming related genes,RRG)的染色质,从而使得成熟肝细胞可响应损伤信号发生重编程,称为重编程感受态 (Reprogramming competence),为重编程的发生提供了分子基础。那么,是什么外源信号诱导了重编程的发生呢?损伤下肝细胞重编程发生通常是在特定的区域内,因此,这些损伤外源信号应该也存在特异的区域分布。此外,RRG基因很多都是胚胎发育相关,是否肝细胞去分化利用了胚胎时期的信号,重新在损伤过程激活了这些RRG基因?抑或有损伤特定机制另外调控了这些RRG基因?   科研人员利用单细胞测序的手段,解析了健康的肝脏和损伤肝脏里的肝细胞不同亚群的表达谱,鉴定到损伤出现的Sox9+ LPLCs。LPLCs的特征基因同样在肝胚胎发育过程中高度富集,说明肝细胞去分化重新激活了胚胎发育时期的基因。通过伪时间分析,结合单样本GSEA富集分析,科研人员解析了从正常肝细胞转变到LPLCs过程中激活的信号通路,发现免疫信号通路在转变过程中高度激活,并且免疫信号通路的激活程度与重编程轨迹呈正相关。   研究进一步对肝脏不同种类的免疫细胞进行了敲除,发现敲除巨噬细胞能够显著抑制LPLCs的出现,而敲除适应性免疫细胞以及NK细胞和粒细胞对LPLCs出现无明显作用。由于肝脏损伤下,巨噬细胞存在异质性,按照来源分主要分为两种,一种是胚胎发育时期来源的Kupffer细胞 (KCs),另一种是损伤下招募的单核来源的巨噬细胞 (MoMFs)。科研团队通过对巨噬细胞进行单细胞测序,解析了肝脏损伤下巨噬细胞的异质性,并利用巨噬细胞谱系特异性敲除的动物模型,发现KCs是LPLCs出现所必要的,而阻断MoMFs对LPLCs出现无影响。   为了研究KCs调控LPLCs出现的机制,科研人员对KCs特异分泌的因子进行体内过表达筛选,发现KC特异表达的IL-6可在无损伤的肝脏内诱导LPLCs出现,具体机制是结合肝细胞IL6R/gp130受体,其下游是通过STAT3信号转导实现。   为了研究STAT3调控重编程基因表达的分子机制,科研团队利用ChIP-seq技术证明了STAT3能够结合到重编程相关基因的位点。这些位点是受Arid1a调控并预先开放的染色质区域。这些位点同样具有更高的H3K27ac(增强子)的修饰,体内的报告系统实验也揭示STAT3能结合到增强子区域,促进下游基因的转录。由于LPLCs的特征基因也包含了胚胎发育时期基因,科研人员发现胚胎发育过程中STAT3并未激活,组蛋白H3K27ac修饰在LPLCs相关的增强子也未激活,说明了肝脏损伤下IL-6/STAT3信号是结合了损伤特异的增强子诱导了前体基因的表达。   该研究揭示了肝脏损伤下巨噬细胞的炎症信号通过损伤特异的转录调控模式诱导肝细胞去分化的机制。该机制为探索诱导体内重编程的因子,开发治疗肝脏疾病相关药物,奠定了理论基础。   该研究工作得到中国科学院、国家自然科学基金委、科技部、上海市科学技术委员会、上海市发展和改革委员会等的支持。