《三菱化学甲基丙烯酸酯开发出植物衍生材料的MMA单体制造技术》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2022-02-22
  • 三菱化学公司及其子公司三菱化学甲基丙烯酸酯已开发出一种使用植物衍生材料的 MMA(甲基丙烯酸甲酯)单体制造技术,并已开始设计试点工厂。

    两家公司(集团)将通过以下三种方法制造的MMA单体定义为“可持续MMA”,并致力于开发其制造技术。

    1. 收集、分解和再利用使用过的丙烯酸树脂的分子回收

    2. 将植物源性原料应用于现有MMA单体制造工艺的新制造技术

    3、植物源性原料通过发酵直接制造MMA单体的新制造技术

    使用方法 2 取得了可喜的结果,促使本集团开始设计新的试验工厂。将植物衍生原材料应用于现有工艺将能够使用100% 生物衍生碳生产 MMA。该试点工厂将于 2023 财年投入运营,在展示该技术的可行性后,目标是在 2026 年将其应用于现有的商业规模工厂。

    集团还在开发创新的催化剂和工艺,以提高其现有MMA 单体制造技术的生产力,努力通过减少制造过程中的能源消耗和排放来减少对环境的影响。

    MMA是一种丙烯酸树脂的原料,用于汽车灯罩、招牌、水族箱、油漆、建筑材料和许多其他物品。全球对 MMA 的需求已超过 360 万吨,预计将继续以与每个国家的 GDP 相同的水平增长。

    作为MMA和丙烯酸树脂行业占有率第一的全球第一制造商,本集团将挖掘该业务的潜力,与世界各地的利益相关者一起减少整个供应链的环境负担,并寻求积极引领努力实现循环经济。

相关报告
  • 《颜宁团队发《PNAS》:首次开发出制备单层石墨烯膜材料新方法》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-01-03
    • 冷冻电子显微镜(cryo-EM)提供了一种有效的方法来研究生物大分子的结构。直接电子检测和先进算法的技术突破使cryo-EM能够以接近原子的分辨率绘制生物大分子的精确结构细节。随着cryo-EM的扩展,许多研究人员的共同看法是cryo-EM的瓶颈在于样品制备。Cryo-EM要求将蛋白质颗粒悬浮在薄薄的玻璃化冰中以避免变性。为了实现这一点,无定形碳膜和多孔碳网格已被广泛使用。碳膜(通常为20 nm厚)不可避免地会引入电子散射,这会增加噪声并降低图像分辨率。 因此,有孔的碳网格(可在孔区域中形成溶液层)已被认为是用于高分辨率单粒子分析的首选冷冻电磁网格。但是,其并不适用于所有蛋白质。尽管有些蛋白质更喜欢附着在碳膜上而无法进入孔中,但另一些蛋白质却以折衷的方式停留在空气-水界面上。另外,冰厚度的不均匀性使得难以在整个网格上搜索薄冰区域,其中图像对比度对于高分辨率图像处理是最佳的。由于稀薄的冰块和高蛋白密度是蛋白质结构高分辨率重建的关键,因此可以解决这些问题将使cryo-EM受益。 2019年12月26日,颜宁团队在国际权威期刊PNAS上发表题为“High-yield monolayer graphene grids for near-atomic resolutioncryoelectron microscopy”的文章,开发了一种更方便,成本更低的方法来制造高质量的石墨烯冷冻EM网格用于单颗粒冷冻EM分析。 研究团队通过使用有机分子辅助转移方法将连续的单层石墨烯从其原始基板铜箔转移到多孔碳栅格上来制造石墨烯冷冻EM栅格。在转移过程中,通过使用一层薄的甲基丙烯酸甲酯(MMA)支撑石墨烯,该方法可以使悬浮的石墨烯非常高地覆盖孔区域。 来自不同地区的统计数据表明,悬浮的单层石墨烯的平均产率约为99%,高于任何先前报道的功能性石墨烯冷冻EM网格。使用这种方法获得的高石墨烯产量在批次之间是一致的。此外,清洁工艺足以去除大多数有机分子残留物并获得清洁的石墨烯表面。整个制造过程大约需要几个小时,并且可以批量生产多达数百个网格,而无需特殊的设备或大量的试剂。 冷冻电子显微镜(cryo-EM)代表了生物大分子结构测定的前沿技术。然而,与低温样品制备相关的技术挑战限制了cryo-EM无法实现更广泛的目标物的更高分离度。 该研究证明了高产量的单层石墨烯支撑膜改善了低温样品的质量。到目前为止,使用这种方法,已经通过cryo-EM和最少的数据集实现了最小蛋白质的最高分辨率结构。该技术为更接近原子分辨率的cryo-EM的更通用的冷冻样品制备铺平了道路。
  • 《美开发出制造纳米精度物体新方法》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-12-21
    • 美国研究人员开发出一种新方法,可“打印”各种形状、多种材质的纳米精度三维物体,在光学、医疗、机器人等领域有广阔的应用前景。 参与研究的麻省理工学院生物工程及大脑和认知科学副教授爱德华·博伊登说,这是一种多种材料创建纳米级精度三维结构的新方法。相关论文发表在新一期美国《科学》杂志上。 新研究采用了一种被称为“内爆制造”的技术。团队使用吸水性很强的聚丙烯酸酯凝胶作为微观制造支架,将支架浸泡在含有荧光素分子的溶液中。在双光子显微镜下,研究人员用激光激活荧光素分子,使其附着在凝胶的特定位置充当锚点,然后添加需要“打印”的材料分子与锚点结合,比如金属、量子点、DNA(脱氧核糖核酸)等。 当所有分子就位,研究人员向凝胶中加酸使整个结构收缩,每个维度上可以缩小到十分之一,整个体积缩小到原来的千分之一。目前,研究人员可利用该方法制造出体积为1立方毫米、分辨率为50纳米的物体。 现阶段3D打印技术主要通过逐层叠加方式创建微小三维结构,但这一过程比较缓慢,并且只适用于利用聚合物、塑料等材料制造“自支撑结构”,造不出中空等结构。 而通过“内爆制造”可以创造出各种结构的纳米精度三维物体,包括有梯度的、非连通的及复合材料的结构等。 研究人员认为,该技术最早的应用可能在光学领域,例如制造用以研究光的基本特性的特殊透镜以及用于手机摄像头、显微镜或内窥镜的镜头等。在更远的将来,该技术可用于生产纳米级电子产品或机器人等。