马铃薯是全球 约 13 亿人的主粮 ,在我国粮食安全与乡村振兴战略中也扮演着重要角色。由致病疫霉 (Phytophthora infestans) 引发的马铃薯晚疫病是马铃薯生产中最具毁灭性的病害,其在十八世纪引发的“爱尔兰大饥荒”直接造成当地人口锐减30%,目前全球每年损失超过100亿美元,晚疫病也被列入农业农村部《一类农作物病虫害名录》,是我国重点关注的重大农业病虫害之一。目前马铃薯晚疫病的防治主要依赖大量使用化学农药,我国南方部分地区,由于马铃薯品种易感病,即使在化学防治的情况下其产量也受到严重损失。因此,亟待在理论上深入解析马铃薯抗晚疫病的抗性机理,在生产上精准培育和推广马铃薯抗病品种。
目前从马铃薯不同野生种中克隆出的抗病基因已超过30个,但由于致病疫霉变异速度快,能快速克服抗病基因,目前大多抗病基因的田间抗性已被克服 (Karki et al., 2021)。RB是从马铃薯二倍体近缘野生种Solanum bulbocastanum中克隆的CC(coiled-coil)类NLR抗病基因 (Song et al., 2003),美国多个课题组的前期重要工作解析了RB和其对应的无毒基因IPI-O1(Avrblb1)之间的识别关系,并提出其可能的识别假说 (Chen et al., 2012; Zhao and Song, 2021)。国家马铃薯产业体系科学调研显示RB在田间仍具有良好且广谱的晚疫病抗性,但是美国农业部和育种企业的大量田间数据显示RB影响马铃薯产量,制约了该抗病基因的推广。
2024年6月28日,南京农业大学作物疫病团队与合作者在《The Plant Cell》期刊上在线发表了题为“Alternative splicing of a potato disease resistance gene maintains homeostasis between growth and immunity”的研究论文,揭示了马铃薯持久抗病基因RB通过可变剪切精细调控其基因表达水平进而平衡马铃薯生长与抗性的分子机制。该研究发现RB基因存在可变剪切,该基因结构中的唯一的内含子发生内含子保留。对侵染过程中RB不同转录本的表达水平进行定量分析发现,非侵染阶段RB主要以内含子保留的转录形式(RB_IR)存在,而当致病疫霉侵染时,被剪切的成熟转录本RB_CDS的表达水平受到诱导上调,RB_IR的表达水平则相对下降。进一步通过马铃薯稳定转基因的方法对RB两个转录本的抗晚疫病表型进行分析,表明内含子剪切转录本RB_CDS能够对晚疫病提供抗性,RB_IR则对晚疫病表现感病表型。
为进一步揭示抗病基因RB可变剪切调控及其抗性激活的分子机制,该研究通过构建RB可变剪切报告系统并筛选了部分SRE蛋白发现,RB特异性识别的效应分子IPI-O1能够诱导RB抗性转录本RB_CDS的表达;对IPI-O1的靶标蛋白鉴定发现,IPI-O1能够与剪切因子CWC15互作,并共定位在细胞核散斑及细胞核核仁中。通过RNAi介导的基因沉默构建CWC15马铃薯稳定沉默转基因株系,表明CWC15沉默影响RB的剪切水平变化及其对致病疫霉的抗性激活。
该研究揭示了RB抗病基因利用内含子在非侵染时抑制抗性转录本而维持植物正常生长,而通过RNA剪切复合体感知病菌侵染,促进抗性转录本表达进而促进晚疫病抗性形成的新机理。该研究与前人研究共同揭示了RB抗病激活的多层次性,推测剪切体和抗病受体在不同水平对病菌的响应可能是延缓病菌变异,维持RB田间持久抗性的原因之一。该研究同时也提出了一种以内含子为操作工具协同植物抗性与产量性状,进而精准改良农作物抗病虫的思路。