《美国研究团队开发出针对所有20种已知流感病毒亚型的通用流感mRNA疫苗》

  • 来源专题:生物安全
  • 编译者: 闫亚飞
  • 发布时间:2022-12-23
  • 据生命科学前沿公众号11月26日消息,美国宾夕法尼亚大学佩雷尔曼医学院的研究团队开发出针对所有20种已知流感病毒亚型的实验性mRNA疫苗,可提供对其他致命性流感病毒毒株的广泛保护,或成为预防未来流感大流行的普遍措施。该团队使用来自所有已知的流感病毒亚型的免疫原作为接种疫苗,可引起一种记忆性免疫反应,迅速召回并适应新的大流行流感病毒毒株,极大减少感染引起的严重疾病和死亡。小鼠模型表明该多价mRNA疫苗激发了四个月以上高水平的抗体,且对所有20种流感病毒亚型都有强烈反应。该疫苗策略可用于冠状病毒等具有大流行潜力的病毒。相关研究成果发表于Science期刊。
  • 原文来源:https://mp.weixin.qq.com/s/dvX9fBTdxwZFXmC6cMDVRg
相关报告
  • 《流感病毒上的“小尾巴” 或让通用流感疫苗成真》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-02-24
    • 作为RNA病毒的流感病毒可谓非常“善变”。不过近日传来一个好消息,美国斯克利普斯研究所、芝加哥大学和西奈山伊坎医学院的科学家们发现了流感病毒的一个“阿喀琉斯之踵”,这也为他们寻求通用流感疫苗方面的研究带来了帮助。研究人员在《自然》杂志上报告称,即便病毒每年都发生变异,但关注病毒长期被忽视部分的抗体(研究人员称之为锚抗体),有可能识别出各种各样的流感毒株。   流感病毒为何如此“善变”   虽然都被称为感冒,但流感可比普通感冒“破坏力”大多了。感染流感病毒后,患者会突发高热、咳嗽、头痛、全身无力、肌肉疼痛等。而且流感很容易引发各种严重的并发症,包括肺炎、中耳炎、心肌炎、脑膜炎等。   据世界卫生组织(WHO)2015年统计的数据,全球每年约有5%—10%的成人和20%—30%的儿童罹患季节性流感,导致全球出现300万—500万重症病例。每年约有25万—50万人因流感而死亡。   不过幸运的是,流感可以通过接种疫苗预防。只是流感疫苗不像水痘、白喉等疾病的疫苗一样,接种一两次就可以一劳永逸,流感疫苗需要每年接种。其中一个重要原因就是流感病毒发生突变的频率较高。   “流感病毒是RNA囊膜病毒,可分为甲、乙、丙、丁四型。其中甲型与乙型会在人类中引起较严重的疾病,是造成人类疾病的主要病原。”湖北大学生命科学学院教授陈纯琪介绍,由于流感病毒的基因组是RNA,因此在复制的过程中其非常容易发生突变。   在流感病毒外壳上的血凝素蛋白与神经氨酸酶,不但是病毒的主要抗原,更与病毒的感染和复制息息相关。   “这两个蛋白质就像是流感病毒感染细胞时一进一出的两把钥匙。”陈纯琪解释说,流感病毒感染细胞时,需要血凝素蛋白与细胞表面受体结合,而当病毒在细胞内完成复制扩增,要去感染更多细胞的时候,则需要神经氨酸酶的作用。   以病毒种类繁多且经常发生变异的甲型流感病毒为例,目前已经被鉴定出来的甲型流感病毒血凝素蛋白有18种,根据发现时间先后编号,分别被命名为H1到H18,而神经氨酸酶有11种,被命名为N1到N11。比如新冠病毒暴发前,让人类如临大敌的猪流感H1N1就携带了一号血凝素蛋白(H1)和一号神经氨酸酶(N1)。   “流感病毒的变异也不是随心所欲的,像甲型流感有小变异和大变异两种,其中造成抗原小变异的抗原漂移,只在原先的基因上发生点突变,产生局部的改变。而大变异则是造成抗原大变异的抗原转变,这种变异影响范围大,可以把整个血凝素蛋白和神经氨酸酶彻底换成别的种类,比方说H1换成H3,N1换成N2。”陈纯琪说。   血凝素蛋白位于病毒颗粒最外层,又与病毒感染细胞有关,所以人体免疫系统只要能够产生中和抗体来识别并阻挡血凝素的作用,就能够有效防止病毒感染。   “然而流感病毒能够通过抗原变异的过程来改变血凝素蛋白,以此逃脱免疫系统的识别与攻击,因此,尽管都是H3N2病毒株,也有可能在病毒的基因发生了一些突变之后,出现感染过H3N2病毒株的人再次受到感染的情况。”陈纯琪表示,这便是每年反复发生季节性流感的原因。   小变异发生的频率较高,属于量变,可引起流感的中、小型流行。抗原大变异发生的频率较低,大概每隔十几年才出现一次。但如果发生了抗原转变导致新亚型出现,或者是较长时间没有出现的旧亚型再度出现,大部分的人群在这种情况下缺乏相对应的免疫力,就可能会发生流感的大流行。   下季流行流感病毒株需预测   因为流感病毒容易发生变异,所以每一年造成季节性流感的病毒或多或少都有些差异。   现行的流感疫苗涵盖了H1N1以及H3N2这两个主要的甲型流感病毒以及一或两个乙型流感病毒。陈纯琪介绍,包含一种乙型流感病毒的称为三价疫苗,包含两种乙型流感病毒的称为四价疫苗。   根据流感病毒的变异,每年接种的流感疫苗都会做出相应的改变。WHO每年都会分析探讨如何选用下一季流行的流感疫苗株。   WHO通过分析全球的数据来预测下一季可能流行的流感病毒株;而后将新的病毒株与标准病毒株进行基因重组和驯化,制造出可用于生产的新病毒疫苗株。该疫苗株要带有变异病毒的外壳蛋白(即血凝素蛋白与神经氨酸酶)来引起人体的抗体保护反应,同时又要保有大部分标准病毒株的基因,如此才能很好地在受精鸡胚中扩增;再将疫苗病毒株注射至受精鸡胚中以培养扩增,之后收集病毒并进行活化;最后经检验合格,制成流感疫苗。   目前各大疫苗制作厂多使用受精鸡胚来大量制造流感病毒疫苗。“这种制造流感疫苗的技术稳定成熟,但制作需要使用大量合格的新鲜受精鸡胚,对鸡蛋严重过敏的人不可接种。”陈纯琪介绍,整个疫苗制作周期至少20周,如果突发流感疫情可能会供不应求。最关键的是如果一开始的预测不准确,便会影响整季的疫苗接种效果。   锚抗体或能识别多种流感病毒   尽管流感病毒很狡猾,但也并非无懈可击。   “流感病毒靠外壳上的血凝素蛋白来感染人体细胞,而针对血凝素蛋白产生的抗体也是阻挡病毒感染最重要的免疫反应。”陈纯琪解释,血凝素本身是一个长条型的蛋白质,形状和功能都像一把钥匙,最前端是负责与细胞受体结合的头部结构域,接着是一段长柱状的茎部结构域,最后端则有一个锚钉结构域,如此整个血凝素蛋白才能够固定在病毒的外壳上。   头部结构域是人体的中和抗体主要攻击的部位,但是头部区也最容易发生突变,变异之后就能够逃逸人体免疫系统的识别。相对于头部区,茎部较不容易发生突变,所以针对茎部区所产生的抗体可以对抗多种变异的流感病毒株,这就为设计通用流感病毒疫苗开启了一个新的思路。   科学家们将不同的头部区域与H1茎部区融合在一起,做成了嵌合型的血凝素蛋白,然后同样使用受精鸡胚来生产疫苗毒株。前期的临床试验已经证实,这种新型的疫苗是安全的,接种之后可以有效引发人体产生对抗病毒的抗体。   在《自然》近期发表的最新研究中,科研人员分析了358个不同的人源单克隆抗体,这些人都接种过传统或新型通用疫苗,或者是感染过流感病毒,所以体内带有对抗流感病毒的抗体。   “这些抗体有的可以识别血凝素头部区,有的可以识别茎部区,而其中有一组是可以识别锚钉部的抗体,作者称之为锚抗体,这是首次鉴定出的可以识别血凝素蛋白头部和茎部以外区域的抗体。”陈纯琪介绍,科研人员进一步测试这些锚抗体是否可以识别不同的流感病毒,结果发现锚抗体不但能中和多种H1变异病毒,也能中和H2以及H5病毒株。   科研人员更进一步使用小鼠的动物模型证实,这种抗体对三种不同的H1流感病毒株都有保护效果。由此证明,锚抗体具有预防病毒感染的效力。“而这些发现也说明了血凝素的锚钉区,是一个能够诱发保护性抗体的抗原,所以未来的通用流感疫苗制造应重点考虑将锚钉区纳入设计。”陈纯琪说。   最后陈纯琪表示,开发通用流感疫苗来对抗所有变异毒株,是所有设计流感病毒疫苗科学家共同的目标。理论上,只要在疫苗的成分中包含一个或多个不易变异又能够引起保护性中和抗体的区域,就能够达到预防大部分流感病毒的效果。科学家们一直在努力寻找这样的有效抗原区域,而近期的这篇论文正是证明了这个方向的可行性,并且为设计更加有效的通用流感疫苗提供了一个新的思路。
  • 《Cell:高福等研究团队开发出一种针对β冠状病毒的通用疫苗设计策略》

    • 来源专题:中国科学院病毒学领域知识资源中心
    • 编译者:malili
    • 发布时间:2020-07-09
    • 冠状病毒(CoV)是一组多样化的包膜病毒,可进一步细分为四个属:α-CoV、β-CoV、γ-CoV和δ-CoV。迄今为止,已知有7种CoV可导致人类疾病。其中,两种α-CoV(hCoV-NL63和hCoV-229E)和两种β-CoV(HCoV-OC43和HKU1)仅引起自限性的感冒类疾病。然而,其余三种β-CoV(SARS-CoV、MERS-CoV和SARS-CoV-2)则会危及生命。到目前为止,还没有临床上有效的预防或治疗人类高致病性CoV感染的药物,这凸显了疫苗开发的迫切性。 在CoV中,嵌入包膜中的刺突蛋白(S)负责识别宿主细胞受体,以启动病毒进入细胞。S蛋白的受体结合结构域(RBD)是这种受体停靠的必要条件。SARS-CoV和SARS-CoV-2使用相同的功能性宿主细胞受体---人血管紧张素转化酶2(hACE2),而MERS-CoV使用人CD26(也称为人二肽肽酶4,hDPP4)。科学家们之前已揭示了这些CoV识别宿主细胞受体的结构基础。 到目前为止,大多数强效中和单克隆抗体都靶向CoV RBD。因此,RBD是一个有吸引力的疫苗靶点,这是因为它可以将免疫反应集中在受体结合的干扰上。迄今为止,已有报道称,一些基于RBD的疫苗正在研制中,用于对抗MERS-CoV和SARS-CoV。然而,基于RBD的亚单位疫苗可能面临一些重要的挑战,主要来自于它们相对较低的免疫原性,因此它们必须与适当的佐剂组合使用,或者在合适的蛋白序列、片段长度和免疫方案方面对它们进行优化。增强基于RBD的疫苗免疫原性的策略包括增加抗原大小、多聚化或在颗粒中密集显示抗原,然而,这些策略不可避免地引入了外源序列,从而使得它们的临床使用潜力复杂化。 在一项新的研究中,来自中国科学院北京生命科学研究院、中国医学科学院医学实验动物研究所、中国科学院微生物研究所和中国疾病预防控制中心等研究机构的研究人员描述了一种通用的β-CoV免疫原设计,它克服了基于RBD疫苗的免疫原性限制。人们之前已经观察到CoV RBD二聚体,但它们的免疫原性尚未得到测试。他们发现,与传统的RBD单体形式相比,通过二硫键连接的RBD二聚体形式显著增强了抗体反应和中和抗体滴度。在小鼠模型中,它使得这些动物免受MERS-CoV感染,并缓解了肺部损伤。晶体结构显示这种RBD二聚体完全暴露了双受体结合基序(receptor binding motif, RBM),这是中和抗体识别的主要位点。 图片来自Cell, 2020, doi:10.1016/j.cell.2020.06.035。 相关研究结果于2020年6月28日在线发表在Cell期刊上,论文标题为“A universal design of betacoronavirus vaccines against COVID-19, MERS and SARS”。论文通讯作者为中国科学院北京生命科学研究院的戴连攀(Lianpan Dai)、中国医学科学院医学实验动物研究所所长秦川(Chuan Qin)教授、中国科学院微生物研究所研究员严景华(Jinghua Yan)以及中国疾病预防控制中心主任、中国科学院微生物研究所的高福(George F. Gao)院士。 为了提高这种二聚体的稳定性,在不引入任何外源序列的情况下,通过结构引导设计,将这种免疫原进一步设计为串联重复单链二聚体(tandem repeat single chain dimer,串联重复sc-dimer)版本。RBD-sc-二聚体作为二硫键连接的二聚体保留了较高的疫苗效力。接着,这一策略被进一步推广到开发针对另外两种高致病性β-CoV---SARS-CoV-2和SARS-CoV---的疫苗。值得注意的是,与常规的RBD单体相比,RBD-sc-二聚体设计显著提高了免疫原性,中和抗体滴度提高了10~100倍,这表明它作为β-CoV疫苗设计通用策略的可行性。 特别是,两剂量的RBD-sc-二聚体引发的针对SARS-CoV-2感染的中和抗体滴度高达大约4096。对MERS-CoV和SARS-CoV-2的RBD-sc-二聚体进行了进一步开发,以便在GMP级生产中进行中试规模生产。这两者都可以在工业标准的CHO细胞系统中以高产量(g/L水平)进行生产,这表明这种策略具有可扩展性和进一步临床开发的前景,以便控制MERS-CoV和正在进行的COVID-19大流行。 一般而言,目前的候选CoV疫苗可分为两类:(i)基于基因的疫苗,包括DNA/mRNA疫苗、重组疫苗载体和活病毒疫苗,它们在宿主细胞中产生抗原;(ii) 基于蛋白的疫苗,包括灭活全病毒和蛋白亚单位疫苗,它们的抗原在体外制造。蛋白亚单位疫苗在传统上用于疫苗开发,这类疫苗在预防乙型肝炎和带状疱疹等疾病方面具有良好的安全性和有效性。在这项新的研究中,这些研究人员报道了CoV RBD-sc-二聚体作为蛋白亚单位疫苗的设计,代表了CoV疫苗开发的一条有前途的途径。 结构指导下的抗原设计是快速、精确制造疫苗的重要工具。全长S蛋白是作为CoV抗原亚单位疫苗的另一种常见的选择。全长三聚体S蛋白通常具有很高的免疫原性,原因很可能是它具有较大的尺寸(大约600kDa)。它不仅包含RBD,即强效中和抗体的主要靶点,还包含也能诱导中和抗体或保护性抗体的非RBD区域,比如N端结构域。人们之前已报道了一种通过基于结构的抗原设计来让MERS-CoV S蛋白融合前构象保持稳定从而提高基于全长S蛋白的CoV疫苗疗效的通用策略。然而,由于已报道针对CoV免疫反应的抗体依赖性增强(ADE)现象,人们寻求最小化的有效免疫原。另外,CoV S蛋白的RBD已被认为是一个有吸引力的疫苗靶点,这是因为它在免疫聚焦(immune focusing)方面具有优势,但可能需要有效的佐剂和多剂量来产生足够的免疫原性。 这些研究人员将这种二硫键连接的RBD二聚体鉴定为免疫原:与常规的RBD单体相比,它的免疫原性显著提高,这一点通过中和抗体滴度来证实。通过结构引导设计,这种RBD二聚体经过进一步改造后成为串联重复sc-二聚体,这可以成为β-CoV疫苗设计的一种通用策略。事实上,利用RBD-sc-二聚体对小鼠进行两次免疫足以使所有针对MERS、COVID-19和SARS的测试疫苗获得高水平的抗体反应。据此,将采用两剂疫苗接种方案来评估基于RBD-sc-二聚体的CoV疫苗在动物模型和人体中的保护效果。值得注意的是,在三次免疫后, RBD单体的免疫原性与两次接种sc-二聚体疫苗相似。特别是对于SARS-CoV疫苗,RBD-sc-二聚体在三次免疫后仅表现出略高的抗体反应(** P<0.01)和中和抗体滴度(* P<0.05)。 RBD-sc-二聚体免疫原性增强的原因是:(i)抗原分子量从约30kDa翻倍到约60kDa;(ii)双RBM,即这种二聚体双价地发挥作用,这可能使B细胞中的B细胞受体交联,以获得更好的刺激;(iii)RBD的二聚体界面上的非RBM表位可能被阻塞,以进一步提高免疫聚焦;(iv) 优势免疫表位的暴露。 总之,这些研究人员提供了一种通用的策略来设计β-CoV疫苗,并在针对MERS、COVID-19和SARS的疫苗开发中证实了这个概念。由此产生的免疫原可应用于其他表达系统,如酵母、昆虫细胞,也可应用于其他疫苗平台,如DNA、信使RNA和疫苗载体。经过改造的RBD-sc-二聚体不引入任何外源序列,从而突显了这种基于RBD-sc-二聚体的CoV疫苗临床开发的可行性。这项研究中描述的COVID-19和MERS候选疫苗有希望从实验台进一步进展到临床。g/L水平的抗原产量突出了扩大生产能力,以便满足全球的迫切需求,特别是针对大流行性COVID-19的需求。 这项研究存在的局限性 众所周知,CoV RBD是中和抗体干扰病毒受体结合的主要靶点,这些研究人员关注的是基于RBD的疫苗所诱导的体液反应。还应进行扩展研究,比如被动转移实验,以进一步证实这种体液反应是否足以抵御CoV的挑战,尽管他们近期的研究工作通过使用人源单克隆抗体证实了被动保护的存在。另外,虽然在重组蛋白型疫苗的研究中,磷酸盐缓冲液(PBS)和PBS加佐剂都被广泛用作安慰剂,但使用给予无关蛋白加佐剂的对照组将是一种更好的阴性对照选择。(生物谷 Bioon.com)