《连发两篇顶刊,佛山科技学院刘全团队等发现两种人类致病新病毒》

  • 来源专题:中国科学院病毒学领域知识资源中心
  • 编译者: malili
  • 发布时间:2021-03-01
  • 蜱是重要的病原传播媒介,可传染的病毒包括森林脑炎病毒、新疆出血热病毒、发热伴血小板减少综合症病毒、内罗毕绵羊病病毒及阿龙山病毒等。

    2021年2月18日,佛山科学技术学院刘全教授、内蒙古林业总医院王伟院长及中山大学中山医学院钱军教授等研究团队合作在Nature Medicine上发表了题为:Identification of a new orthonairovirus associated with human febrile illness in China 的论文。

    研究团队从蜱咬伤病人分离鉴定一种新的蜱传病毒—松岭病毒(Songling virus, SGLV)并提示该病毒感染可能导致病人出现发热、头痛等临床症状。

    研究者首先对一名蜱叮咬后不明原因发热病人的血液进行高通量测序,发现该名患者疑似被一种新的布尼亚病毒感染。随后,通过对病毒进行分离培养,并对病毒的全基因组序列进行分析发现,该病毒的基因组特征和形态结构与已知的内罗病毒属病毒相近,却在系统进化树上形成了一个单独的分支。松岭病毒属于布尼亚病毒目内罗病毒科正内罗病毒属成员,基因组包括L、M、S三个片段,与已知正内罗病毒序列同源性为46.5–65.7%。随后,研究者通过回顾性分析发现,涉及SGLV感染的病人均有蜱叮咬史;疾病潜伏期约为6天;主要临床症状表现为头疼、发热、精神沉郁、乏力和头晕等;部分病人体内能检测到特异性抗体。此外,研究者检测了东北地区硬蜱与血蜱,发现均有SGLV感染,提示其在SGLV传播上的重要意义。

    中国学者发现了一种新的内罗病毒,该病毒与中国东北地区的发热性疾病有关。研究结果表明,松岭病毒(SGLV)可能是以前未知的发热性疾病的原因,应该进行更多的研究来确定这种疾病在其目前识别区域之外的地理分布。

    2019年5月30日,佛山科学技术学院刘全教授、浙江大学周继勇教授、内蒙古林业总医院王伟院长合作,在《新英格兰医学杂志》(NEJM)发表了题为:A New Segmented Virus Associated with Human Febrile Illness in China 的原创论著(Original Article)。

    2017年,在对中国蜱虫传染疾病的监测中,研究团队发现了一名内蒙古病人,患有原因不明的发热性疾病。他的临床表现类似于蜱传脑炎病毒(TBEV)感染,然而,奇怪的是病人体内却未检测到TBEV的RNA和针对该病毒的抗体。

    这是一名来自阿龙山的病人,该病患者的大热病因不明,研究人员从该患者身上获得了血液样本,使用基因组序列分析和电子显微镜分离和鉴定致病病原体。

    同时研究人员还在该医院启动了一项加强监控计划,以筛查出现发烧、头痛和蜱叮咬病史的其他患者。并使用RT-PCR和细胞培养分析来检测病原体和免疫荧光和中和分析,以确定患者血清样本中病毒特异性抗体的水平。

    分析揭示了致病原因是一种以前未知的分段RNA病毒,研究人员将其命名为阿龙山病毒(ALSV),属于Flavi-viridae家族中未分类的 jingmen virus 组。

    研究人员还在其他患有发烧和头痛的患者以及该地区的蜱虫和蚊子中也检测到阿龙山病毒(ALSV)。RT-PCR检测了内蒙古和黑龙江地区86例发热,头痛和蜱叮咬史的患者的ALSV感染情况。血清学检测显示,所有19例患者均发生血清学转换,其中标本可从急性期和疾病的恢复期获得。

    总的来说,刘全团队等发现并命名了阿龙山病毒和松岭病毒,这两种新型病毒均与中国东北地区的发热性疾病有关,可能是之前未知的发热性疾病的原因,应该进行更多的研究来确定其在其目前识别区域之外的地理分布。

    (来源:中国生物技术网)

    参考文献:

    [1] Ma, J., Lv, XL., Zhang, X. et al. Identification of a new orthonairovirus associated with human febrile illness in China. Nat Med (2021). https://doi.org/10.1038/s41591-020-01228-y

    [2] Wang ZD, Wang B, Wei F, et al. A New Segmented Virus Associated with Human Febrile Illness in China. N Engl J Med. 2019 May 30;380(22):2116-2125. doi: 10.1056/NEJMoa1805068. PMID: 31141633.

    链接:https://mp.weixin.qq.com/s/4T3-5wNuyTP0O1yu0piz_g

相关报告
  • 《Nature:新研究发现9种新的冠状病毒》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-02-20
    • 在一项新的研究中,来自加拿大、法国、俄罗斯、西班牙、美国和德国的研究人员重新分析了所有公开的RNA测序数据,发现了比以前已知的RNA病毒多出近10倍的病毒,包括在一些意想不到的地方发现的几种新的冠状病毒。这个全球规模的RNA病毒数据库可以帮助快速识别病毒外溢到人类,以及那些影响牲畜、作物和濒危物种的病毒。相关研究结果于2022年1月26日在线发表在Nature期刊上,论文标题为“Petabase-scale sequence alignment catalyses viral discovery”。论文通讯作者为加拿大独立研究员Artem Babaian博士。 Babaian博士是Serratus项目合作的幕后推手。Babaian说,与云创新中心(加拿大英属哥伦比亚大学和亚马逊网络服务之间的公共/私人合作)合作,Serratus项目能够在亚马逊网络服务上建立一台“极其强大”的超级计算机,其功率相当于22500个CPU。 这台超级计算机读取了来自世界各地570万个生物样本的2000万GB(gigabyte, 千兆字节)的公开基因序列数据,寻找表明存在RNA病毒的特定基因。这些样本已经收集了13年,并在世界研究界内自由分享,包括从冰芯样本到动物粪便的一切样本。 Serratus项目的研究人员发现了132000种RNA病毒(以前只知道15000种)和9种新的冠状病毒。Babaian估计,如果没有云创新中心和亚马逊网络服务,传统的超级计算机需要花费一年多的时间和几十万美元来完成这项分析所需的2000年的CPU时间。Serratus项目在11天内花费24000美元完成了这一任务。 Babaian说,“我们正在进入一个了解自然界中病毒的遗传和空间多样性的新时代,以及各种各样的动物如何与这些病毒接触。我们希望是如果像SARS-CoV-2---导致COVID-19的冠状病毒---之类的病毒再次出现,我们不会措手不及。这些病毒可以更容易地被识别,并且可以更快地找到它们的天然病毒库。真正的目标是这些感染被及早识别,以至于它们永远不会成为大流行病。如果一名病人出现不明原因的发烧,一旦对血液进行测序,你如今可以将人类中的未知病毒与现有病毒的更大数据库联系起来。例如,如果一名病人在圣路易斯市出现了来源不明的病毒感染,你如今可以在大约两分钟内通过这种数据库进行搜索,并将这种病毒与例如2012年在撒哈拉以南非洲取样的一只骆驼联系起来。” 32岁的Babaian之前一直在加拿大英属哥伦比亚省癌症研究中心进行癌症基因研究,当COVID-19大流行病发生时,他转换了研究方向。Babaian说,这项新的研究是作为一个“有趣的副业”开始的,始于2020年3月3日,当时他和他的登山伙伴朋友---英属哥伦比亚大学工程系学生Jeff Taylor---“在一张餐巾纸的背面”勾勒出了这个想法。他指出,“我应该保留那张餐巾纸。” Babaian不久后向英属哥伦比亚大学的云创新中心(Cloud Innovation Centre)寻求帮助。Serratus项目,以英属哥伦比亚省Tantalus山脉的Serratus山命名,他和Taylor在2020年的一次攀登中看到了这座山,于是发起了这个项目。 Babaian回忆说,当第一批研究结果开始在他的笔记本电脑上闪现时,他正坐在他妻子的护理椅上,这表明Serratus项目不仅在工作,而且以几乎难以理解的速度产生数据。 他说,“这可能是我生命中最激动人心的科学时期。有两种类型的乐趣。第一类是微笑和开玩笑。第二类是当你在做这件事的时候很痛苦,但记忆却很闪亮,就像攀岩。在许多方面,Serratus项目是第二类乐趣。你只需要相信它会成功。” Babaian说,如果没有英属哥伦比亚大学云创新中心的支持,他不可能完成这项研究。他说,“云创新中心确实在那里为我们打开了大门。我们有一个想法,他们从他们的网络中带来了专家,使其成为现实。如今,全球社会可以从所有这些以前未被利用的研究中受益。” 英属哥伦比亚大学云创新中心主任Marianne Schroeder说,“Babaian带着一个创新的愿景找到了我们。英属哥伦比亚大学云创新中心的力量在于,我们将英属哥伦比亚大学的内部创新和技术团队与亚马逊网络服务的团队配对。我们非常荣幸能够支持这一愿景的实现;协助为复杂问题找到技术解决方案是我们的工作。” 参考资料: Robert C. Edgar et al. Petabase-scale sequence alignment catalyses viral discovery. Nature, 2022, doi:10.1038/s41586-021-04332-2.
  • 《Cell:李汉杰团队绘制人类免疫系统发育时空图谱,发现两种新型巨噬细胞并揭示其功能》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-09-15
    • 巨噬细胞是免疫系统中不可或缺的组成部分,广泛分布在不同组织中,并在发育、器官形成、稳态维持和疾病发生发展中发挥关键作用【1】。巨噬细胞异质性显著,主要表现在形态、定位、基因表达谱及功能等方面,这些表型由巨噬细胞的发育起源和驻留的微环境所决定【2】。具有组织特异性特征的巨噬细胞包括中枢神经系统的小胶质细胞(Microglia)、肝脏的枯否细胞(Kupffer cells)和表皮的朗格汉斯细胞(Langerhans cells)等。还有一些分布于多个器官的巨噬细胞,如血管周围巨噬细胞(Perivascular macrophages)。   基于啮齿类动物的研究结果,学术界对巨噬细胞亚型的多样性、发育起源以及组织特异性的形成有了一定的认识【3】。然而,这些发现是否适用于人类仍是未知数,特别是人类胚胎发育过程中巨噬细胞的多样性、发育起源、功能及成熟的动态过程等问题还缺乏深入而全面的研究。   2023年9月12日,中国科学院深圳先进技术研究院李汉杰课题组联合深圳市宝安区妇幼保健院、深圳大学、上海交通大学和复旦大学等单位在国际顶尖学术期刊 Cell 上发表了题为:An immune cell atlas reveals the dynamics of human macrophage specification during prenatal development 的研究论文。   研究团队结合单细胞转录组测序、先进的生物信息学手段、多重免疫荧光染色、体外功能实验等技术,构建了横跨18个发育阶段、19种组织的人类胚胎免疫系统发育高分辨率图谱。研究团队重点关注了最具组织特异性的巨噬细胞,鉴定了15种巨噬细胞亚型,其中包括两种新的巨噬细胞亚型,即存在于表皮、睾丸、心脏等外周组织的类小胶质细胞(Microglia-like cells)和具有血管生成促进功能并广泛分布于多个组织中的促血管生成巨噬细胞(Proangiogenic macrophages,PraM)。   该研究通过构建人类产前免疫细胞发育的时空动态图谱,揭示了多种巨噬细胞亚型在发育过程中的分化起源、空间定位、功能特征及转录调控机制。 研究团队对来自受孕后4-26 PCW(Postconceptional Week,PCW)囊括19种人类胚胎组织样本的免疫细胞进行了单细胞转录组测序,获得了近30万个高质量的免疫细胞 (图1),并鉴定了11种主要的免疫细胞类型,包括:巨噬细胞(Macrophages)、祖细胞(Progenitor cells)、B 淋巴细胞、T 淋巴细胞、先天淋巴细胞(Innate-like lymphocytes)、自然杀伤细胞(Natural killer cells)、树突状细胞(Dendritic cells)、单核细胞(Monocytes)、巨核细胞(Megakaryocytes)、粒细胞(Granulocytes)和红细胞(Erythrocytes)。在此基础之上,研究团队对每一种主要的免疫细胞类型进行了更细致的分类,最终注释得到56种免疫细胞亚型。 研究团队重点对巨噬细胞进行了研究并将其进一步细分为了15个亚群。通过时空分析,他们发现在人类胚胎发育时期,巨噬细胞就已经具有了显著的组织特异性。在4 PCW左右(器官初形成阶段),巨噬细胞前体就已经出现在胚胎以及卵黄囊中并一直持续到大概8 PCW,直到被成熟的组织驻留巨噬细胞所替代。 在这些巨噬细胞中,一部分亚型具有显著的组织特异性特征,如中枢神经系统中的小胶质细胞,肝脏中的枯否细胞、表皮中的朗格汉斯细胞等。而另外一部分亚型共享于多个组织中,如促血管生成巨噬细胞以及其前体细胞(pre-Proangiogenic macrophages,pre-PraM)。研究团队还发现肾上腺中有一群特有的组织驻留巨噬细胞(AXL+、FCGR3A+),睾丸中也存在一群特有的组织驻留巨噬细胞(MMP9+)和一群具有破骨细胞特征的巨噬细胞(ACP9+、SIGLEC15+、MMP9+)。 中枢神经系统之外的类小胶质细胞 在该研究中,研究团队首次在胚胎多个外周组织(皮肤、心脏及睾丸)中鉴定出一群和小胶质细胞有相似基因表达谱特征的巨噬细胞(图2)。这一发现打破小胶质细胞只存在于脑及脊髓中的传统认知。这群细胞高表达P2RY12、TMEM119、SALL1、C3等和小胶质细胞相同的特征基因,并且在无监督聚类分析中,这群细胞也和脑、脊髓中的小胶质细胞聚为一类。研究人员因此将这群新发现的分布在多个外周组织的细胞命名为类小胶质细胞(Microglia-like cells)。 流式分析进一步验证了这群外周组织中的类小胶质细胞与中枢神经系统中的小胶质细胞一样,都呈现CD45lowP2RY12+MRC1-的表型。此外,基于多重免疫荧光实验,发现类小胶质细胞在Carnegie Stages 12(CS12)时期就已经出现在表皮组织中。在14 PCW之前,类小胶质细胞一直是表皮中最主要的免疫细胞,此后细胞比例才开始逐渐减少,在20 PCW之后,基本被朗格汉斯细胞替代。在胚胎心脏中,类小胶质细胞最早出现在CS13的主动脉(aorta)中,并且在26 PCW之前一直是主动脉中最主要的免疫细胞。而成人主动脉组织中则检测不到这群类小胶质细胞。在胚胎睾丸中,类小胶质细胞最早能够在CS14的时候被检测到,主要存在于附睾(epididymis)中的输出小管(efferent duct)周围,而在睾丸实质(parenchyma)中比例则较低。 表皮和中枢神经系统均起源于外胚层,而主动脉和附睾则起源于主动脉-性腺-中肾(aorta-gonad-mesonephros,AGM)区域。研究团队推测,小胶质细胞以及类小胶质细胞的前体从卵黄囊迁移到外胚层和AGM区域,随后在这两个区域独立分化为小胶质细胞或类小胶质细胞。 表皮驻留的类小胶质细胞呈极化分布,与神经嵴细胞互作并调控其分化 由于类小胶质细胞在表皮中最为丰富,研究团队进一步研究了它们在表皮组织中的功能。研究团队发现,与四肢和腹部皮肤相比,类小胶质细胞在背部和头部表皮中比例更高。在9 PCW时,背部表皮中几乎所有的免疫细胞都是类小胶质细胞,而四肢表皮中约60%的免疫细胞是类小胶质细胞。进一步定量分析表明,在胚胎发育不同阶段,背部表皮的类小胶质细胞都比四肢表皮更多,分布更密集(图3)。 类小胶质细胞在表皮中的极化分布模式与神经嵴细胞(neural crest cells,NCCs)的背外侧迁移路线(dorsolateral migration)有类似之处,因此研究人员猜测表皮的类小胶质细胞与NCCs之间可能存在某种互作。NCCs是外胚层衍生的多能干细胞,背外侧迁移时可分化为黑色素细胞(melanocytes)。通过多重免疫荧光实验,研究团队发现表皮中的类小胶质细胞和NCCs之间存在直接的相互作用。与之一致的是,研究团队观察到类小胶质细胞和黑色素母细胞(melanoblasts)的密度在不同发育阶段沿表皮的背-侧-腹轴(dorsal-lateral-ventral axis)逐渐降低(图3)。 为了评估类小胶质细胞对神经嵴细胞分化的影响,研究团队体外培养了来源于胚胎背部的新鲜皮肤组织块。在胚胎皮肤中清除类小胶质细胞显著减少了黑色素母细胞的数量,这提示了类小胶质细胞可能会调控神经嵴细胞向黑色素细胞的分化(图3)。 广泛分布于多个脏器中的促血管生成巨噬细胞 研究团队在多个脏器中都鉴定到了一群高表达促血管生成基因(VEGFA、TNF、IL1B、CXCL8/IL8)的巨噬细胞,并且这群细胞在不同组织中都具有相似的基因表达谱。体外成管实验也证实了这群细胞促血管生成的功能。他们进一步分析发现,这群细胞在各个脏器中都富集在血管周围(图4)。 研究团队又进一步分析了这群促血管生成巨噬细胞的发育起源。通过多种拟时序分析算法推断这群细胞是从卵黄囊起源的巨噬细胞前体分化而来,并且中间经历了一个相对不成熟的前体状态(pre-PraM)。拟时序分析推算出的分化轨迹与细胞的真实采样时间高度一致,并且其促血管生成信号也在随之增强。此外,研究团队用成管的内皮细胞上清液培养来源于卵黄囊的早期巨噬细胞前体,发现可以诱导出表达促血管生成基因的巨噬细胞。这些结果明确了这群促血管生成巨噬细胞的发育起源。 总而言之,该研究通过对人类产前阶段近30万个免疫细胞的单细胞转录组分析,着重描绘了15种巨噬细胞亚型的时空动态变化。突破性的发现了一群在转录组、特征蛋白表达、和形态上与中枢神经系统中的小胶质细胞类似且存在于皮肤、睾丸和心脏中的类小胶质细胞。它们是早期表皮中的主要免疫细胞群,沿背-侧-腹轴呈极化分布。这群类小胶质细胞可以与神经嵴细胞相互作用,并调节其向黑色素细胞的分化。通过功能、空间特征、分化轨迹的研究,研究团队还细致解析了一种尚未被充分了解的促血管生成巨噬细胞,它们驻留在多个器官的血管周围。这些促血管生成巨噬细胞与小胶质细胞均从起源于卵黄囊的巨噬细胞前体分化而来(图5)。 该论文为研究人类巨噬细胞的异质性和发育提供了一个高分辨率的时空动态图谱,有助于理解其在发育过程中的不同作用。研究团队还开发了一个专门的可视化平台(http://119.8.233.169/),方便共享数据,促进研究成果的共同探索和领域发展。 中国科学院深圳先进技术研究院李汉杰研究员、深圳市宝安区妇幼保健院朱元方教授、深圳大学总医院吴雪清教授、上海交通大学医学院Florent Ginhoux教授、复旦大学代谢与整合生物学研究院青年研究员王冠琳博士为论文共同通讯作者。中国科学院深圳先进技术研究院客座学生王泽帅(华中农业大学博士研究生)、吴志生(东南大学博士研究生)、研究助理冯若轻;深圳市宝安区妇幼保健院母胎医学研究所陈晓燕博士、王昊博士;复旦大学代谢与整合生物学研究院青年研究员王冠琳博士,厦门大学博士研究生李沐曦、以色列魏茨曼研究所王双寅博士为论文共同第一作者,深圳先进院为第一单位。 论文特别致谢了深圳合成生物研究重大科技基础设施,在研究课题开展过程中,尤其是在单细胞转录组建库前的细胞分选及建库早期的关键步骤中需要使用大量384孔板,合成生物大设施的自动化、高通量平台发挥了不可替代的作用。在研究过程中,仅需要两到三名工作人员在一天内就能够制备上千块孔板,且每一块均能够按照实验要求添加细胞裂解液和引物,从而保证了实验的准确性和可重复性。合成生物大设施高效的工作方式使研究工作得到快速推进。研究团队期待未来能够继续与大设施合作,在合成生物学领域取得更多突破。 参考文献: 1.Park, M.D., Silvin, A., Ginhoux, F., and Merad, M. (2022). Macrophages in health and disease. Cell 185, 4259-4279. 2.Guilliams, M., Thierry, G.R., Bonnardel, J., and Bajenoff, M. (2020). Establishment and Maintenance of the Macrophage Niche. Immunity 52, 434-451. 3.Mass, E., Ballesteros, I., Farlik, M., Halbritter, F., Gunther, P., Crozet, L., Jacome-Galarza, C.E.,Handler, K., Klughammer, J., Kobayashi, Y., et al. (2016). Specification of tissue-resident macrophages during organogenesis. Science 353.