《北京大学研究团队将取向排列的碳纳米管场效应晶体管扩展到10纳米以下节点》

  • 来源专题:集成电路
  • 编译者: 李衍
  • 发布时间:2023-07-28
  • 随着集成电路的发展,摩尔定律逐渐失效,寻求硅以外的替代材料已成为整个信息产业的重要方向之一。在这方面,碳纳米管被认为是一个非常有潜力的竞争者。然而,采用传统的掺杂工艺制备碳纳米管晶体管的过程中遇到了巨大的困难。

    我国从2000年就开始了针对碳基电子学的研究工作。2007年,北京大学彭练矛院士、张志勇教授团队就提出了非掺杂制备碳纳米管CMOS器件的方法,制备出了第一个性能超过同尺寸硅基晶体管的碳纳米管晶体管器件。2017年,团队在Science上发文,首次制备了5 nm技术节点的顶栅碳纳米管场效应晶体管,器件的本征性能和功耗综合指标上性能相较同尺寸的传统硅基晶体管器件约有10倍的优势,展现了碳纳米管电子学的巨大潜力。2020年5月份,该团队再次在Science发文,采用多次提纯和限域自组装的方法,在四英寸基底上制备了高密度,纯度超过99.9999%的碳纳米管平行阵列,达到了超大规模碳纳米管集成电路的需求,为推进碳基集成电路的实用化和工业化奠定了基础。

    有序半导体碳纳米管因其易于微型化和高能效,在创建缩放场效应晶体管(FET)方面是硅的潜在替代品。然而,取向排列的纳米晶体管能否以与低节点硅技术相同的尺寸制造并保持高性能仍不清楚。基于多年的研究积累,近期北京大学彭练矛院士、张志勇教授团队研制出可扩展到与10纳米硅技术节点尺寸相对应的取向排列的碳纳米管场效应晶体管。研究人员首先制造出接触栅间距为175 nm的纳米管场效应晶体管,其导通电流为2.24 mA μm-1,峰值跨导为1.64 mS μm-1。6个纳米管场效应晶体管用于创建静态随机存取存储器单元,面积为0.976 μm2,与90 nm硅技术节点相当。然后在金属和纳米管之间引入全接触结构,以实现90 Ω μm的低接触电阻,并降低对接触长度的依赖性。这样就可以制造出接触栅间距为55 nm(相当于10 nm节点)的纳米管场效应晶体管,其载流子迁移率和费米速度均高于10 nm硅金属氧化物半导体晶体管。

    该研究成果以“Scaling aligned carbon nanotube transistors to a sub-10?nm node”为题发表在《Nature Electronics》上。

    论文链接:https://www.nature.com/articles/s41928-023-00983-3

    参考信息链接:https://www.163.com/dy/article/I9TOR79905329TW8.html

  • 原文来源:https://phys.org/news/2023-07-scaling-aligned-carbon-nanotube-transistors.html
相关报告
  • 《碳纳米管“变身”超微型晶体管》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-12-28
    • 来自中国、日本、俄罗斯和澳大利亚的科学家组成的国际研究小组在最新一期《科学》杂志撰文指出,他们历时5年,使用一种插入电子显微镜的独特工具,制造出了一种超微型晶体管,其宽度仅为人类头发丝宽度的1/25000。   在这项新研究中,科学家们首先朝一个碳纳米管同时施加力和低电压,加热它直到外层管壳分离,留下单层纳米管,从而制造出这种微型晶体管。研究人员解释称,热量和应变改变了纳米管的“手性”,这意味着结合在一起形成纳米管壁单原子层的碳原子被重新排列,结果让碳纳米管“变身”为晶体管。   用于开关和放大电子信号的晶体管是包括计算机在内的所有电子设备的基础元件。苹果公司表示,为未来苹果手机供电的芯片包含150亿个晶体管。几十年来,计算机行业一直致力于开发越来越小的晶体管,但将晶体管小型化到纳米级是现代半导体工业和纳米技术领域面临的一大挑战。   研究人员表示,他们或许可以借助碳纳米管制造出节能的纳米晶体管,以超越由硅制成的微处理器,但控制单个碳纳米管的“手性”(决定了碳原子的几何结构和电子结构)仍然是一个巨大的挑战。在最新研究中,他们通过加热和机械应变改变了金属纳米管片段的局部“手性”,设计并制造了碳纳米管分子内晶体管。   最新研究负责人、昆士兰大学材料科学中心联合主任德米特里·戈尔伯格教授说:“我们证明,我们拥有操纵纳米管分子特性来制造纳米级电子器件的能力,为下一代先进计算设备所用微型晶体管的研制开辟了新途径。”   研究人员强调称,尽管最新方法不适用于微型晶体管的大规模生产,但展示了一种新的制造原理,并开辟了利用纳米管的热机械处理方法获得具有所需特性的最小晶体管的新视野。
  • 《基于碳纳米管的柔性集成电路》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-10-14
    • 柔性集成电路作为信息处理的核心单元,是实现全柔性电子系统的重要组成部分,由于其应用形式的扩展,与现有的混合柔性系统(部分或全部基于刚性硅片)相比具有优势,更好的适应性,以及在生物/非生物界面操作的能力。最终集成系统的可交付功能在很大程度上取决于柔性集成电路的信息处理能力,这在很大程度上取决于其性能和集成规模。此外,随着柔性电子系统在便携式,可穿戴或远程形式且电源受限的应用中变得越来越受欢迎,柔性集成电路的功耗变得至关重要,因为它们会消耗系统中的大量能量。由于在热预算较低且工作环境复杂的柔性基板上的制造环境受到限制(从机械和电气条件的角度来看),因此,寻求具有高性能,合理的集成规模和低功耗的柔性集成电路非常具有挑战性,但是对于高级的,完全灵活的系统而言,这是必需的。生物相容性,可降解性和可配置性等其他特征将为柔性集成电路增加价值,并为柔性电子产品引入非常规形式和新的可交付成果。 本文,北京大学胡又凡课题组在《 Acc. Mater. Res》期刊发表了“Flexible Integrated Circuits Based on Carbon Nanotubes”的论文,该文献总结了过去五年我们在发展碳纳米管基柔性集成电路方面所做的努力。作为制造下一代芯片的有希望的候选材料,碳纳米管集成电路在性能和功耗方面已经显示出其优越性,我们通过材料优化、器件设计、加工技术开发,将这些进步扩展到一种灵活的形式,我们从简单介绍碳纳米管的特性入手,揭示其作为下一代电子器件沟道材料的内在优势。接下来,我们讨论了我们开发的制造方法,通过直接制造或转移工艺在柔性基板上构建集成电路,以保持这些优势并使电路适合不同的应用环境。然后,介绍了不同形式和特性的碳纳米管基柔性集成电路,包括: (1)在超薄高性能衬底上植入互补金属氧化物半导体电路, (2) 具有生物集成能力和低功耗的可转移集成电路; (3)高产量、高均匀性的可降解集成电路; (4)多功能可配置集成电路。还介绍了用这些电路构成的集成柔性传感器系统。 最后,我们以对碳纳米管在柔性集成电路和新型电子产品中所面临的挑战和新机遇的概述来结束这篇文章。 图1.具备功能的柔性IC的CNT的关键属性 图2.(a)在柔性基板上直接制造器件的过程。 (b)CAED实验装置的示意图。 (c)照片显示了用电子设备制造的超薄聚对二甲苯基板的分层过程。比例尺,1厘米。平均分层速度 (d)施加电压, (e)NaCl浓度 (f)硅片倾斜角的函数。 (h)照片显示用金电线沉积的PI,PMMA和SEBS薄膜分层。 图3.(a)CNT CMOS结构的截面图。 (b)在分层之后测量的100个p型TFT和100个n型TFT 的V th的传递特性和统计分布。(d)在卷制前后的TFT的转印特性。插图:正在滚动的系统照片。比例尺,200μm。 (e)典型CMOS反相器的VTC。 (f)随着V dd的增加,三级RO的振荡频率变化。插图:RO的照片。比例尺,100μm。(g)附着在皮肤上以进行汗液监测的集成传感器系统的照片。比例尺,1厘米。 (h)集成传感器系统的电路图和(i)频率-湿度曲线。 图4.(a)转移到任意非常规衬底上的器件和IC。 (b)I 开 / I 关和(c)I 关 / W对100个已转移设备的统计分布。插图(c):V th的统计分布。 (d)100个逆变器的VTC。插图:电路图。 (e)这些逆变器的峰值分布和最低功耗。 (f)全加法器的光学图像和(g)输入-输出特性。 图5.(a)基于CNT薄膜的可降解器件的晶圆级制造。 (b)转移前晶片上10个芯片的空间分布, (c)这些芯片的器件良率。 (d)芯片10中100个TFT的传输特性。 (e)V th的对应统计分布。 (f)不同转移码片之间的V th统计。 (g)附着在植物叶片上的传感平台的光学图像和电路图。比例尺,1厘米。 (h)实时监测模拟生态系统。 (i)一系列图像显示了人工降雨下感应平台的退化过程。比例尺,1厘米。 图6.(a)DMG设备的剖视图。 (b)不同V ds下典型DMG设备的传输特性。插图:DMG设备(红色曲线)和NG设备(蓝色曲线)的示意性能带结构。 (c)DMG和NG设备之间的I off / W比较。 (d)二极管配置下典型DMG设备和NG设备的I – V曲线。 (e)78种DMG设备的整流比的统计分布。 (f)具有两个DMG器件和一个电阻器的可配置柔性IC的等效电路图, (g)光学图像和(h)动态输入-输出特性 碳纳米管作为一种非常有前途的下一代芯片的候选材料,在柔性集成电路中的应用也显示出了其优越性,这不仅体现在它们所获得的高性能上,与刚性衬底上的同类产品相匹配,而且还表现出所需的兼容性和适应性适合各种新兴应用。对于构造用于处理模拟信号的电路,要求器件具有大跨导(以获得更好的放大能力),寄生电容/电阻小(用于提高采样率和采样速度),器件之间的参数偏差可忽略不计。在数字电路的构造中,为了使电路具有更好的抗噪声能力,扇形输入/扇出、正确的时序逻辑输出和级联能力等问题越来越受到重视。使更强大的柔性集成电路能够构建完全灵活的集成系统,将释放出柔性电子的真正力量,它可以在各种应用领域提供突破,例如先进的监测、诊断和治疗形式。