《基于碳纳米管的柔性集成电路》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-10-14
  • 柔性集成电路作为信息处理的核心单元,是实现全柔性电子系统的重要组成部分,由于其应用形式的扩展,与现有的混合柔性系统(部分或全部基于刚性硅片)相比具有优势,更好的适应性,以及在生物/非生物界面操作的能力。最终集成系统的可交付功能在很大程度上取决于柔性集成电路的信息处理能力,这在很大程度上取决于其性能和集成规模。此外,随着柔性电子系统在便携式,可穿戴或远程形式且电源受限的应用中变得越来越受欢迎,柔性集成电路的功耗变得至关重要,因为它们会消耗系统中的大量能量。由于在热预算较低且工作环境复杂的柔性基板上的制造环境受到限制(从机械和电气条件的角度来看),因此,寻求具有高性能,合理的集成规模和低功耗的柔性集成电路非常具有挑战性,但是对于高级的,完全灵活的系统而言,这是必需的。生物相容性,可降解性和可配置性等其他特征将为柔性集成电路增加价值,并为柔性电子产品引入非常规形式和新的可交付成果。


    本文,北京大学胡又凡课题组在《 Acc. Mater. Res》期刊发表了“Flexible Integrated Circuits Based on Carbon Nanotubes”的论文,该文献总结了过去五年我们在发展碳纳米管基柔性集成电路方面所做的努力。作为制造下一代芯片的有希望的候选材料,碳纳米管集成电路在性能和功耗方面已经显示出其优越性,我们通过材料优化、器件设计、加工技术开发,将这些进步扩展到一种灵活的形式,我们从简单介绍碳纳米管的特性入手,揭示其作为下一代电子器件沟道材料的内在优势。接下来,我们讨论了我们开发的制造方法,通过直接制造或转移工艺在柔性基板上构建集成电路,以保持这些优势并使电路适合不同的应用环境。然后,介绍了不同形式和特性的碳纳米管基柔性集成电路,包括:


    (1)在超薄高性能衬底上植入互补金属氧化物半导体电路,

    (2) 具有生物集成能力和低功耗的可转移集成电路;

    (3)高产量、高均匀性的可降解集成电路;

    (4)多功能可配置集成电路。还介绍了用这些电路构成的集成柔性传感器系统。


    最后,我们以对碳纳米管在柔性集成电路和新型电子产品中所面临的挑战和新机遇的概述来结束这篇文章。

    图1.具备功能的柔性IC的CNT的关键属性

    图2.(a)在柔性基板上直接制造器件的过程。


    (b)CAED实验装置的示意图。

    (c)照片显示了用电子设备制造的超薄聚对二甲苯基板的分层过程。比例尺,1厘米。平均分层速度

    (d)施加电压,

    (e)NaCl浓度

    (f)硅片倾斜角的函数。

    (h)照片显示用金电线沉积的PI,PMMA和SEBS薄膜分层。

    图3.(a)CNT CMOS结构的截面图。


    (b)在分层之后测量的100个p型TFT和100个n型TFT 的V th的传递特性和统计分布。(d)在卷制前后的TFT的转印特性。插图:正在滚动的系统照片。比例尺,200μm。

    (e)典型CMOS反相器的VTC。

    (f)随着V dd的增加,三级RO的振荡频率变化。插图:RO的照片。比例尺,100μm。(g)附着在皮肤上以进行汗液监测的集成传感器系统的照片。比例尺,1厘米。

    (h)集成传感器系统的电路图和(i)频率-湿度曲线。

    图4.(a)转移到任意非常规衬底上的器件和IC。


    (b)I 开 / I 关和(c)I 关 / W对100个已转移设备的统计分布。插图(c):V th的统计分布。

    (d)100个逆变器的VTC。插图:电路图。

    (e)这些逆变器的峰值分布和最低功耗。

    (f)全加法器的光学图像和(g)输入-输出特性。

    图5.(a)基于CNT薄膜的可降解器件的晶圆级制造。


    (b)转移前晶片上10个芯片的空间分布,

    (c)这些芯片的器件良率。

    (d)芯片10中100个TFT的传输特性。

    (e)V th的对应统计分布。

    (f)不同转移码片之间的V th统计。

    (g)附着在植物叶片上的传感平台的光学图像和电路图。比例尺,1厘米。

    (h)实时监测模拟生态系统。

    (i)一系列图像显示了人工降雨下感应平台的退化过程。比例尺,1厘米。

    图6.(a)DMG设备的剖视图。


    (b)不同V ds下典型DMG设备的传输特性。插图:DMG设备(红色曲线)和NG设备(蓝色曲线)的示意性能带结构。

    (c)DMG和NG设备之间的I off / W比较。

    (d)二极管配置下典型DMG设备和NG设备的I – V曲线。

    (e)78种DMG设备的整流比的统计分布。

    (f)具有两个DMG器件和一个电阻器的可配置柔性IC的等效电路图,

    (g)光学图像和(h)动态输入-输出特性


    碳纳米管作为一种非常有前途的下一代芯片的候选材料,在柔性集成电路中的应用也显示出了其优越性,这不仅体现在它们所获得的高性能上,与刚性衬底上的同类产品相匹配,而且还表现出所需的兼容性和适应性适合各种新兴应用。对于构造用于处理模拟信号的电路,要求器件具有大跨导(以获得更好的放大能力),寄生电容/电阻小(用于提高采样率和采样速度),器件之间的参数偏差可忽略不计。在数字电路的构造中,为了使电路具有更好的抗噪声能力,扇形输入/扇出、正确的时序逻辑输出和级联能力等问题越来越受到重视。使更强大的柔性集成电路能够构建完全灵活的集成系统,将释放出柔性电子的真正力量,它可以在各种应用领域提供突破,例如先进的监测、诊断和治疗形式。

相关报告
  • 《单壁碳纳米管薄膜的连续制备及全碳电路研制获得突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-04
    • 单壁碳纳米管具有优异的力学、电学和光学性质,在柔性和透明电子器件领域可作为透明电极材料或半导体沟道材料,因此被认为是最具竞争力的候选材料之一。开发出可高效、宏量制备高质量碳纳米管薄膜的方法已成为该材料走向实际应用的关键难题。首先,迄今制备的单壁碳纳米管薄膜的尺寸通常为厘米量级,批次制备方式不能满足规模化应用要求。其次,由于在碳纳米管薄膜制备工艺过程中通常会引入杂质和结构缺陷,使得薄膜的光电性能劣化,远低于理论预测值。因此,发展一种高效、宏量制备高质量单壁碳纳米管薄膜的制备方法具有重要价值。   近日,中国科学院金属研究所先进炭材料研究部孙东明团队与刘畅团队合作,提出了一种连续合成、沉积和转移单壁碳纳米管薄膜的技术,实现了米级尺寸高质量单壁碳纳米管薄膜的连续制备,并基于此构建出高性能的全碳薄膜晶体管(TFT)和集成电路(IC)器件。研究人员采用浮动催化剂化学气相沉积方法在反应炉的高温区域连续生长单壁碳纳米管,然后通过气相过滤和转移系统在室温下收集所制备的碳纳米管,并通过卷到卷转移方式转移至柔性PET基底上,获得了长度超过2 m的单壁碳纳米管薄膜。对该过滤沉积过程进行流体仿真,其结果表明当调节出气口速度使抽滤过程处于平衡状态时,该过滤系统中的气流呈现出均匀的气流速度分布(图1)。通过该方法制备的单壁碳纳米管薄膜表现出优异的光电性能和分布均匀性,在550纳米波长下其透光率为90%,方块电阻为65Ω/□(图2)。研究人员利用所制备的碳纳米管薄膜构筑了高性能全碳柔性透明晶体管(图3)以及异或门、101阶环形振荡器等柔性全碳集成电路(图4)。   这是研究人员首次开发出米级长度的单壁碳纳米管薄膜的连续生长、沉积和转移技术,所制备的单壁碳纳米管薄膜及其晶体管具有优异的光电性能,为未来开发基于单壁碳纳米管薄膜的大面积、柔性和透明电子器件奠定了材料基础。该工作得到了国家自然科学基金、国家重点研发计划、中国博士后科学基金、中国科学院装备研制计划、辽宁百千万人才计划、青年相关人才计划等项目的支持。单壁碳纳米管薄膜的连续制备技术已获得中国发明专利(ZL201410486883.1),相关论文于近日在Advanced Materials在线发表。
  • 《一种调节碳纳米管性能的新技术》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-08-06
    • 来自Skoltech光子学和量子材料中心(CPQM)的研究人员已经开发出一种新技术,通过在其表面上涂覆雾化掺杂剂溶液来微调单壁碳纳米管(SWCNT)的光电特性,从而铺设 新型SWCNT在光电子领域应用的途径。 研究结果发表在The Journal of Physical Chemistry Letters上。 最近几个月,市场上出现了可折叠和可弯曲的屏幕,推动了独家材料的发展,并为下一代几乎所有尺寸和形状的产品开辟了道路。 使用先进解决方案SWCNT生产的透明导电膜(TCF)被视为柔性和透明电子器件的核心元件。 与常规的n型透明刚性导体(例如铝掺杂的氧化锌或锡掺杂的氧化铟)相比,柔性和可拉伸的SWCNT膜具有p型(空穴型)导电性。 然而,对SWCNT电子特性的微弱控制是其广泛工业应用的关键威慑力。 这对于光电应用尤其如此,其中通常需要对导电率和费米能级进行有效控制。 通常用掺杂剂处理碳纳米管。 由Albert Nasibulin教授指导的Skoltech实验室的研究人员制定了一种新方法,保证了SWCNT的均匀,可控和易于重复的气溶胶掺杂。 使用新技术实现的性能引领了这一趋势,通过柔性和透明的电子设备激发了目前广泛使用的刚性透明金属氧化物导体的替代,并开发了基于极其导电透明薄膜的新应用。 “我们的方法可以通过时间控制的掺杂气溶胶粒子沉积来轻松调整SWCNT薄膜参数,”Alexey补充道。 项目科学家观察到,特别针对碳纳米管开发的新型微调方法可应用于其他低维材料的电子结构。