《超薄太阳能电池新突破:光伏效率提高18%》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2021-12-13
  • 由莱斯大学领导的一支科研团队近日在太阳能电池方面取得新的突破。团队利用 Advanced Photon Source(APS)的超亮 X 射线,不仅提高了太阳能电池效率,还同时保持了它们对环境的承受能力。

    莱斯大学的 Aditya Mohite 和他的同事们发现,阳光本身会收缩二维过氧化物中原子层之间的空间,足以将材料的光伏效率提高 18%。而目前在太阳能领域,任何 1% 的突破都是值得称赞的,更别说是两位数了。

    过氧化物是具有立方体晶体格的化合物,是高效的光收集器。它们的潜力多年来一直为人所知,但它们提出了一个难题:它们善于将太阳光转化为能量,但阳光和水分会使它们退化。

    Mohite 表示:“在 10 年内,过氧化物的效率已经从大约 3% 飙升到 25% 以上。其他半导体花了大约 60 年时间才达到这个水平。这就是为什么我们如此兴奋。就像你的机械师想要运行你的发动机以查看其内部发生的情况一样,我们想要从本质上拍摄这种转变的视频,而不是单一的快照。像APS这样的设施使我们能够做到这一点”。

    APS 是美国能源部(DOE)科学办公室在 DOE 阿贡国家实验室的用户设施,团队利用 APS 来确认这一发现。这项研究最近发表在《自然-纳米技术》上。

  • 原文来源:http://www.nengyuanjie.net/article/52449.html
相关报告
  • 《新突破!有机太阳能电池向前一步》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-07-19
    • 7月17日,在“抚顺光伏产业创新发展研讨会”这一盛会上,汇聚了包括中国科学院院士李永舫、中国化工学会副理事长兼秘书长方向晨、中国战略新兴产业金融创新研究院院长孟祥阁、中国石油与化工工业联合会科技与装备部副主任王秀江、中国化工学会化工新材料专业委员会主任李效玉、秘书长穆元春,以及辽宁石油化工大学教授高志贤等在内的众多顶尖专家学者与企业精英,他们共同聚焦“光”的未来,深入探讨了光伏领域的最新前沿技术,为推动我国“双碳”目标的落地贡献智慧与力量。 会上,有机太阳能电池领域的最新进展成为了全场瞩目的焦点。李永舫院士详尽阐述了有机太阳能电池作为第三代电池技术的独特魅力,其核心优势在于其超薄活性层设计,仅约100纳米的厚度,相较于晶硅电池的数百微米,实现了数量级的飞跃。这一创新不仅显著减轻了组件的重量,更赋予了有机太阳能电池前所未有的柔韧性与透明度,为其在可穿戴设备、建筑光伏一体化系统(如半透明窗户、智能窗帘等)中的广泛应用奠定了坚实基础,预示着绿色建筑与未来生活方式的深刻变革。 此外,有机太阳能电池在环保方面亦展现出卓越性能,彻底摆脱了铅污染等环境问题的困扰,彰显了绿色能源的纯净与可持续。尤为值得一提的是,即便在光线柔和的室内环境中,该类电池仍能维持与户外强光下相当的光电转换效率,这一特性极大地拓宽了其应用场景,为智能家居、室内照明等领域带来了前所未有的发展机遇。 尤为振奋人心的是,抚顺本土企业——橙子(辽宁)科技科技有限公司(简称“橙子科技”)在此次研讨会上宣布了重大突破,成功实现了有机光伏聚合物X1系列产品的量产,其电池转换效率超过18%,标志着有机太阳能电池产业化进程迈出了坚实的一步,也为市场注入了新的活力。橙子科技凭借其强大的生产灵活性,能够迅速响应市场需求,实现从500公斤至1吨不等的定制化生产,充分满足200万至400万平方米的广阔市场需求,预示着有机太阳能电池市场即将开启全新的篇章。
  • 《太阳能电池光电转换效率突破10%》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-07-27
    • 科技日报合肥7月26日电 (记者吴长锋)记者26日从中国科学技术大学获悉,该校陈涛教授、朱长飞教授团队与合作者合作,发展了水热沉积法制备硒硫化锑半导体薄膜材料,并将其应用到太阳能电池中,实现了光电转换效率10%的突破。这一成果日前发表在《自然能源》上。 硒硫化锑是近年来在光伏领域应用的一种新兴光伏材料,其带隙在1.1—1.7电子伏特范围内可调,满足最佳的太阳光谱匹配。同时,硒硫化锑具有较高的吸收系数,500纳米左右厚度的薄膜即能达到最佳吸收。因此,在超轻、便携式发电器件方面也具有潜在的应用。 鉴于硒硫化锑具有良好的稳定性和丰富元素储量,光电转换效率的进一步提升有望推进应用。这一研究成果所发展的水热沉积法在超临界的状态下水热沉积可以生成致密、平整且横向元素分布均匀的光吸收薄膜,从而有利于载流子的传输,结合光吸收、阴阳离子比例的调控以及点缺陷的控制,最终实现了光电转换效率的突破。从材料制备的角度来看,这项研究发展的水热沉积法是一种简便、低成本的薄膜制备方法。 《自然能源》审稿人给予该工作高度评价,认为这是一个里程碑式的效率,为硒硫化锑太阳能电池的发展带来新的曙光。