《我国科学家研发出蜜蜂重要害虫大蜡螟的生态防控技术》

  • 来源专题:农业生物安全
  • 编译者: 李周晶
  • 发布时间:2023-11-29
  • 大蜡螟是一种全球性害虫,对我国的本土蜜蜂中华蜜蜂造成了巨大威胁。大蜡螟幼虫以蜂群的巢房为食,给蜂群健康带来了负面影响,导致养蜂业遭受了严重的经济损失。此前,养蜂农户采取了一些预防措施,如强化蜂群的饲养和保持蜂箱的卫生清洁。然而,目前还没有高效且安全的绿色防控技术来应对大蜡螟。

    2023年11月4日,《Nature

    Communications》期刊发表了我国科学家研究的一种蜜蜂重要害虫——大蜡螟的生物防治技术成果。该技术填补了大蜡螟高效、安全、绿色防控技术的空白。这项研究成果由中国农业科学院蜜蜂研究所联合植物保护研究所等多家单位共同完成。

    联合研究团队首先筛选出一种对大蜡螟毒性高、对蜜蜂安全的苏云金芽胞杆菌;然后,根据大蜡螟幼虫的觅食习性,研发出一种对幼虫具有高引诱效果的诱饵和配套装置;最终,构建了由苏云金芽胞杆菌、诱饵和诱捕装置组成的大蜡螟诱杀技术。蜂群对照试验结果显示,通过对中华蜜蜂主要饲养区4000多群蜂群的试用,该技术对大蜡螟的防效超过93%,可以有效保护蜂群免受大蜡螟的危害。该研究为实现大蜡螟的绿色、高效治理提供了技术支持,对保护我国中华蜜蜂健康具有重要意义。

  • 原文来源:https://www.caas.cn/xwzx/tpxw/4350deef604f4c7a97e83ce86e40b645.htm
相关报告
  • 《PNAS:我国科学家研发出高阶多重实时荧光PCR检测技术》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-03-24
    • 实时荧光PCR技术是目前应用最为广泛的核酸检测技术。然而,由于主流荧光PCR仪器检测通道数目的限制,单个反应所能检测的靶基因数目很难超过6个,限制了该技术在检测涉及多靶点的复杂疾病上的应用。 厦门大学研究团队在《美国国家科学院院刊》(PNAS)杂志上发表了题为“Highly multiplex PCR assays by coupling the 5’-flap endonuclease activity of Taq DNA polymerase and molecular beacon reporters”的文章,研发出了一种称为“MeltArray”的荧光PCR新技术,将荧光PCR的单管检测能力提高了至少一个数量级。 该技术利用了荧光PCR反应中Taq DNA聚合酶的5‘-瓣状内切酶活性,将位于引物下游的“媒介探针”切割,释放出“媒介引物”,“媒介引物”结合到反应体系中的分子信标报告探针上。在Taq酶聚合活性作用下,“媒介引物”沿着分子信标延伸,生成具有特定熔点值的荧光双链。由于每个分子信标可以允许多个“媒介引物”形成一系列具有不同熔点值的荧光双链,单个MeltArray多重荧光PCR反应可检测的总靶基因数目就等于反应中分子信标数量乘以其所容纳的“媒介引物”数量。研究团队实现了单个荧光通道可检测12个靶标,6个荧光通道的仪器可检测72个靶标,这是单个闭管实时荧光PCR一步法目前所能检测的最大靶基因数量。 该研究证实了MeltArray多重荧光PCR技术在不改变现有仪器设备的情况,在遗传病、传染病和肿瘤的分子诊断上都有良好灵敏度和特异性,成功推动荧光PCR这一“老技术”再上“新台阶”,填补了长期存在于低阶PCR和高通量检测二者之间的技术空白。
  • 《bioRxiv:详解我国科学家开发出针对SARS-CoV-2的CAR-M细胞免疫疗法》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-08-06
    • 2019年冠状病毒病(COVID-19)大流行,导致肺炎合并多器官疾病住院人数突然大幅增加,并导致全球超过30万人死亡。COVID-19由新型冠状病毒SARS-CoV-2引起,它是一种基因组为RNA的有包膜的β冠状病毒。SARS-CoV-2感染可能是无症状的,也可能引起广泛的症状,从轻微的上呼吸道感染症状到危及生命的败血症。COVID-19的临床表现包括无症状携带者和以败血症和急性呼吸衰竭为特征的暴发性疾病。大约5%的COVID-19患者(包括20%的住院患者)出现严重症状,需要进行重症监护。超过75%的COVID-19住院患者需要补充氧气。COVID-19的病死率因年龄不同而有明显差异,从5~17岁患者每1000名人中0.3人死亡到85岁或以上患者每1000名人中304.9人死亡。在重症监护室住院的患者中,病死率可达到40%。 目前还没有针对SARS-CoV-2的人类疫苗,但大约有120种候选疫苗正在研发中。在开发有效疫苗的过程中,必须克服一系列挑战,如技术障碍、大规模生产和监管的可行性、法律障碍、潜在的免疫持续时间、产生免疫力所需的疫苗剂量,以及抗体依赖性增强作用等。此外,还有另一个复杂的领域需要考虑:针对COVID-19的药物开发,特别是针对重症或晚期COVID-19患者。据报道,与常规护理相比,地塞米松(dexamethasone)治疗可降低需要补充氧气的患者的28天死亡率(21.6% vs 24.6%;年龄调整后的比率比,0.83 [95% CI,0.74~0.92]),瑞德西韦可将康复时间(出院或不需要补充氧气)从15天减少到11天。在之前的一项针对103例COVID-19患者的随机临床试验中,恢复期血浆并没有缩短康复时间。正在进行的临床试验在测试抗病毒剂、免疫调节剂和抗凝血剂;但是,没有推荐针对COVID-19的特定抗病毒治疗。 嵌合抗原受体(CAR)是一种合成受体,可将T细胞的活性重新导向特定的靶点。CAR构建体包括以单链可变区片段(scFv)形式存在的抗原识别结构域或者胞外结构域中的结合受体/配体、提供支架和信号转导的跨膜结构域,以及来自T细胞受体(TCR)的胞内结构域和触发T细胞活化的共刺激分子。基于长期以来对利用巨噬细胞对抗肿瘤生长的兴趣,经过基因改造后表达CAR的人类巨噬细胞(CAR macrophage, CAR-M)已经被开发出来,并对它们的抗肿瘤潜力进行了表征。巨噬细胞是先天免疫系统的关键效应细胞,负责感知和应对微生物威胁,并促进组织修复。 因此,科学家们推测CAR-M细胞可以用来对抗SARS-CoV-2。然而,人们已发现巨噬细胞高炎症反应和细胞因子释放综合征(CRS)的存在,因而提出了关于使用CAR-M细胞清除病毒的安全性的问题。巨噬细胞高炎症反应对宿主造成损害,特别是在严重感染(包括SARS-CoV-2)的情形下。细胞因子释放综合征也是与CAR-T细胞疗法相关的最重要的并发症。 在一项新的研究中,来自中国第二军医大学和上海交通大学医学院的研究人员开发出一系列基于识别SARS-CoV-2刺突蛋白(S蛋白)的CAR受体,并测试了它们诱导对SARS-CoV-2病毒颗粒的吞噬能力。有趣的是,这些作者报道了一种具有MER酪氨酸激酶(MERTK)胞内结构域的CAR,即CARMERTK,而且与其他CAR相比,它在基于表达抗原的细胞模型中并没有表现出明显的杀伤作用,但在体外在没有促炎细胞因子(proinflammatory cytokine)分泌的情形下却表现出对SARS-CoV-2病毒颗粒的抗原特异性清除。相关研究结果于2020年7月27日在线发表在预印本服务器bioRxiv上,论文标题为“CAR Macrophages for SARS-CoV-2 Immunotherapy”。 巨噬细胞能抵御感染、清除体内破损或异常的细胞,以其吞噬活性、抗原呈递能力和灵活的表型著称。肺实质中的先天免疫反应以骨髓源性单核细胞分化为巨噬细胞为特征,是肺部对抗入侵病原体的一线防御。一般来说,单核细胞/巨噬细胞能够显著地限制病毒的复制。在病毒感染过程中,单核细胞增强的促炎症信号分子水平和引发的抗病毒反应已被证实适用于流感病毒、疱疹病毒和寨卡病毒。此外,最近有研究表明,一些COVID-19患者具有增强的促炎巨噬细胞活性,从而导致炎症细胞因子和趋化因子的加速产生,并且多在预后不良的受试者中观察到。 据这些作者所知,目前还没有研究出基于合成细胞的COVID-19免疫疗法。表达CAR的T细胞(CAR-T)已经被证明是治疗B细胞癌症患者的一种非常有效的方法。利用经过基因改造的巨噬细胞的力量开发针对实体瘤的新型治疗方法是非常有意义的,这是因为CAR-T细胞疗法常常受到T细胞无法穿透实体瘤和抑制性肿瘤微环境的阻碍。与之前的报告相一致的是,具有胞质免疫受体酪氨酸基激活基团(immunoreceptor tyrosine-based activation motif, ITAM)的CAR受体能够触发巨噬细胞特异性吞噬和杀死抗原表达细胞。在这些作者的数据中,这些表达CAR的巨噬细胞(CAR-M)也表现出对SARS-COV-2病毒颗粒的强大吞噬能力;然而,这种效果伴随着促炎细胞因子IFN-γ、IL-6和IL-8的分泌增加。在CAR-T细胞治疗中,经过基因改造的T细胞增殖通常伴随着高水平的细胞因子释放综合征,干扰素-γ(IFN-γ)、粒细胞集落刺激因子(G-CSF)、IL-6、IL-8和IL-10的循环水平升高。最近的报道已表明,宿主来源的单核细胞/巨噬细胞和CAR-T细胞之间的相互作用在细胞因子释放综合征的病理生理学中起着重要作用。这是有意义的,这是因为类似的炎症细胞因子的血清水平增加与COVID-19的严重性和死亡有关。有趣的是,在经SARS-CoV-2病毒颗粒处理的CARγ和CARζ细胞中,IL-6、IL-8、TNF-α、IFN-γ和IL-10的分泌明显升高,这提示这些CAR-M细胞可能不适合应用于重症或晚期COVID-19患者中。 以前的研究已表明,人类免疫细胞,如THP-1细胞系(人单核细胞白血病细胞系),容易受到SARS-CoV感染。这些作者没有观察到任何证据表明他们的SARS-CoV-2假型病毒感染了THP-1细胞。此外,THP-1细胞对病毒颗粒的摄取率非常低,即使是表达与S蛋白结合的截短CAR,也是如此,这就表明THP-1细胞并非先天性地吞噬病毒颗粒。 值得注意的是,作为在之前的报告中被认为是不成功的受体,CARMERTK在这些作者用于实验的THP-1细胞中表达时,没有表现出对靶细胞的杀伤作用,但却表现出与CARγ和CARζ相似的病毒清除能力。这些数据进一步支持CARMERTK介导“免疫沉默”的病毒颗粒清除,但不会引起促炎反应。 MERTK与TRYO3和AXL一起,属于受体酪氨酸激酶(RTK)的TAM家族。这些受体可以被由磷脂酰丝氨酸(PtdSer)组成的复合配体激活,该配体通过维生素K依赖的蛋白配体Gas6或蛋白S与RTK连接,在先天免疫细胞中发挥关键作用。Gas6具有结合所有这三种受体的能力,而蛋白S是MERTK和TYRO3的特异性配体。凋亡细胞、外泌体和细胞碎片是PtdSer组分的主要来源。在某些情况下,PtdSer组分也是由活细胞(包括T细胞)上暴露的PtdSer斑块提供的。TAM家族受体成员的激活一般会引起先天免疫细胞的抗炎反应、稳态反应,减少因摄取“自我”组分而引起的过度炎症和自身免疫反应。然而,之前的研究也提出,包膜病毒可能劫持TAM受体,通过一个被称为“凋亡模拟(apoptotic mimicry)”的PtdSer依赖性过程促进附着和感染,并作为有效的TAM激动剂起作用,从而抑制靶细胞中的I型IFN反应。 在这项研究中,表达CARMERTK的THP-1细胞对病毒感染的抵抗力相对较强,并能诱导出明显的病毒清除。需要注意的是,这项研究中使用的是非常简单的感染模型,因此,所使用的测定方法无法测量众多可能干扰CAR-M细胞行为的生理和病理因素,如IgG或补体介导的免疫复合物。当然,表达这种合成受体的细胞可以经过进一步的改造和开发,以实现精确的控制。 总之,这些数据揭示了基于CAR的合成方法适用于COVID-19治疗。除了CAR-M细胞直接清除病毒外,这些作者发现有证据表明,基于MERTK的CAR受体并没有诱导促炎细胞因子水平的进一步上调,从而提高了CAR-M细胞在重症COVID-19中作为强效治疗剂的可能性。