《折叠DNA有望精准制备纳米材料》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-11-20
  • DNA只能是双螺旋结构吗?当然不是,它还可以是网状、方形、心形,甚至可以拼出复杂的“中国地图”。

    需要通过光学显微镜才能查看的DNA链,科学家竟然也能像折纸一样,把它们有目的地折叠成各种纳米结构,这也被称为DNA纳米折纸术。

    作为一种精确高效的DNA自组装方法,DNA纳米折纸术应用的范围越来越广。中国科学院国家纳米科学中心研究员丁宝全告诉《中国科学报》记者,该技术目前已被应用于光学材料的精确可控制备、药物与基因靶向递送等诸多领域。

    不久前,丁宝全课题组就首次利用DNA折纸结构为载体高效且可控地完成了化疗和基因治疗的联合给药,该研究成果已在线发表于《德国应用化学》杂志。

    然而,由于制备成本高、稳定性差等问题,想要通过折纸术搭建一座DNA“乐高”,并非易事。

    高科技折纸术

    DNA之所以可以按需求被折叠、粘贴,还要归功于它独特的双螺旋结构:两条平行、反向的单链之间按照精密的碱基互补原则相连接,A(腺嘌呤)与T(胸腺嘧啶)、G(鸟嘌呤)与C(胞嘧啶),就像一把钥匙配一把锁,具有唯一性和高度特异性。

    这些碱基的化学组成使得设计好ATGC排序的两条DNA单链,能在茫茫链海中找到彼此,紧紧结合,最终组成科学家想要的形状。

    “DNA纳米折纸术是一种独特的自下而上构建DNA自组装纳米结构的方法。”丁宝全告诉记者,该技术是以一条长单链DNA(通常是一条噬菌体的基因组DNA)为模板,在数百条短单链DNA(折叠链)的辅助下,通过核酸序列杂交形成预先设计的具有特定尺寸和形貌的二维或三维纳米结构。

    在中国科学院上海应用物理研究所研究员樊春海看来,DNA纳米折纸术是分子自组装技术的一个典型范例,代表了人类借助自然进化的力量(DNA分子),实现了接近随心所欲的纳米尺度的3D打印。

    那么,DNA折纸具体是如何实现的?据丁宝全介绍,要制备DNA纳米折纸结构,首先需要通过程序化软件进行序列设计,然后将模板链和辅助折叠链以一定比例混合进行退火杂交,并将获得的组装结构进行后续的功能化修饰和最终纯化等操作。

    在折叠DNA时,DNA短链就像一个个“图钉”,“钉”在DNA长链构成的支架上,这样才能固定被折叠的长链,保证DNA长链组成的图形不会散开。最后再将DNA长链和短链一起放入一种碱性溶液加热,它们就会自动结合在一起,形成起初设计的图案。

    丁宝全表示,DNA纳米折纸术构建的DNA纳米材料完全由生物大分子DNA组成,具有良好的生物安全性。而且,由于每条DNA链都彼此不同,整个DNA折纸结构是完全可寻址的,可在任意指定位点对结构进行功能化修饰。不仅如此,通过具有特定结构的DNA序列设计,也能实现对特定信号的响应和检测。

    让载体给药更精准

    目前,科学家已经利用DNA纳米折纸术创建了多种结构,静止结构如二维和三维晶体结构、毫微管、多面体和其他造型;功能结构如纳米机器、DNA计算机、药物载体等。

    樊春海告诉《中国科学报》记者,目前,DNA纳米折纸术在国内蓬勃发展,被广泛应用于纳米制造、纳电子和纳光子学、生物传感与纳米药物等领域。特别是在生物医药领域,DNA纳米折纸术更是提供了前所未有的精度来控制纳米药物的组装、控释和靶向。

    丁宝全课题组此次的研究成果主要是利用DNA折纸结构为载体高效且可控地实现了化疗药物阿霉素和线性小发卡RNA转录模板的共传递,通过RNA干扰的机制,有效地下调多个肿瘤耐药相关蛋白的表达,完成了化疗和基因治疗的联合给药。

    “小鼠活体实验结果表明,该类DNA纳米给药体系表现出非常好的肿瘤靶向性和生物相容性,能够对耐药性乳腺癌肿瘤模型产生显著的治疗效果。”丁宝全表示,该研究基于生物系统的天然核酸结构,实现了对肿瘤的协同治疗,扩展了基因治疗的研究思路和可应用的领域。

    “我们会继续以精准制备DNA纳米材料为核心,调控其功能,根据需要‘定制’基于DNA折纸的多功能运输体系,最终实现包括肿瘤与代谢类疾病在内的精确诊断与治疗。”丁宝全表示,发展基于DNA纳米结构的生物检测体系及构建功能载体,研制高效、低毒、靶向、可控的药物运输与释放系统,是目前他们课题组开展的主要方向之一。

    除此之外,丁宝全表示,利用DNA折纸精确定位组装金属纳米结构,构建具有特殊光学性质的组装结构并调控其性能;调控化学反应的过程及产物,例如调控酶级联反应的过程及合成位点及形貌可控的导电高分子等,也是DNA纳米折纸术的主要研究方向。

    成本及稳定性是待解难题

    DNA折纸术虽然给纳米材料带来了无限的想象空间,但想要随心所欲地折叠DNA链,说起来容易做起来难。“DNA纳米折纸技术目前最大的问题在于制造成本,以及体内稳定性,这方面也是目前国际攻关的重点。”樊春海对记者说。

    丁宝全也表示,相比于传统高分子材料,目前用于自组装的DNA序列的合成成本相对较高。后续需要进一步优化核酸制备工艺,特别是需要提高长片段和特定修饰的核酸序列的合成效率。另外,DNA纳米结构的制备主要是在水溶液中完成,并且需要一定浓度的阳离子来稳定,这使其在生物医学领域应用的稳定性显得尤为重要。

    樊春海表示,DNA折纸得到的纳米结构需要很高的离子浓度以维持稳定,这使得其它组分在DNA组装体的进一步沉积变得更加困难。

    而在美国加州理工学院教授钱璐璐看来,要想让DNA组装成复杂的结构,必须要对DNA的生化特性有极为深入的理解。如果不能准确预测每一块折纸的折叠方式,组装复杂结构也就无从谈起。不仅如此,折叠前还需要理解每一块DNA折纸的生化特性,只有这样,才能确保不同的折纸块“找到自己的伙伴”,按正确的位置组合拼接在一起。

    为此,钱璐璐团队有针对性地开发了一款软件,该软件可以根据输入的图像设计一张DNA画布。画布由不同的DNA折纸组合而成,而每一块DNA折纸都需要精确设计。“这一方法能直接被机器人读取,自动混合DNA链。我们不用费太多力气,就能让DNA自我组装成我们想要的纳米结构。”

    在钱璐璐看来,这种成本低廉、操作简单的软件,未来有助于DNA纳米折纸术应用于更多领域。

  • 原文来源:http://news.sciencenet.cn/htmlnews/2018/11/419953.shtm
相关报告
  • 《精准制造:从微纳米迈向原子尺度》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-01-10
    • 空天海地的网络建设,信息世界感知力、通信力以及智算力的建设,迫切需要高端、新型的硅基芯片。然而‘自上而下’的光刻技术制造方式已经接近物理极限。”在日前举行的香山科学会议上,中国科学院院士许宁生说,全球精准制造的竞争已从微纳米尺度迈向原子尺度,未来硅基芯片的发展水平将取决于大规模原子制造技术水平。 此次香山科学会议聚焦原子制造前沿科学问题。1纳米技术节点被视为硅基芯片制造加工技术的物理极限。晶体中相邻原子的距离大约几个埃(0.1纳米),如果能通过直接操控原子来制造芯片,将颠覆以现有光刻技术为基础的制造规则。 从石器时代走来,人类的制造技艺不断精进,正在走进能精准操控物质最基本单元——原子的时代。与会专家认为,在这个过程中,人类不仅将突破诸多制造极限,也将刷新对基础理论的认知。 有望突破芯片制造极限 当前的芯片制造采用“自上而下”的制造方式。这指的是一种从整块材料开始,通过逐层添加、移除或改变材料性质来构建复杂结构的方法,包括薄膜沉积、光刻胶涂敷、光刻显影、刻蚀、量测、清洗、离子注入等多个环节。 为了在单位面积内实现更多晶体管的布局,2011年,研究人员采用鳍式场效应晶体管技术,改变集成电路结构,突破芯片22纳米制程工艺。进入5纳米技术节点后,电子隧穿问题又催生了环绕式结构、垂直传输场效应晶体管等新的结构设计。 然而,随着加工精度不断提升,宏观方式的制造极限随之而来,仅通过结构的巧妙设计将难以满足人们对芯片计算能力日益增长的需求。尤其是随着生成式人工智能的发展,及其在各行各业的垂直落地,算力不足、计算成本过高等问题逐渐凸显。 “硅基芯片大规模原子制造技术的发展可能带来计算和智能技术的基础性变革。”许宁生认为,应在关键材料研制、微纳结构集成、核心加工制造检测等领域开展关键技术研究,推动实现硅基芯片的原子制造。 那么,什么样的材料适用于芯片等元器件的原子制造?复旦大学物理学系教授张远波介绍,国际上认为二维半导体是1纳米及以下节点的重要材料体系,也是唯一公认能够延续摩尔定律的材料。 二维材料具有独特的单分子层晶体结构,例如石墨烯是由碳原子组成的二维材料。“二维材料及器件有高载流子迁移率、丰富电学性能等特点,在1纳米的条件下仍能正常工作,有望突破传统半导体器件的极限。”张远波介绍,近年来,在二维材料的缺陷调控、应力调控、电荷调控、转角堆叠调控等方面,学界取得了巨大进步。例如,晶圆级的二维材料生长已经实现,基于二维半导体集成工艺也已经能够实现大部分硅基电路功能。 关键在于精准可控组装 尽管不少二维材料实现了较大规模的实验室生产,但二维材料仍难以根据需要“随心”构筑。与会专家认为,操纵二维材料和结构,进而构筑异质结构和器件,实现其性质与功能的人工设计与调控,仍是原子制造的核心科学问题。 “通过学习自然,开发先进制造技术,可以实现原子团簇或分子的精准可控组装与制造。”中国科学院院士刘云圻认为,信息技术微型化发展要求原子制造领域在结构、序列、取向、堆叠方式等方面从简单、无序、经验型向复杂、有序、智能型方向发展。 “更为神奇的是,在微观层面,如果将原子或分子按照我们想要的方式排列,就会获得千变万化的性能。”刘云圻说,这些性能是宏观制造难以获得的。需要深入认识微观分子的反应和组装规律,掌握材料的基本物理性质,进而构筑新型柔性微纳器件,以满足未来对人造智慧体制备的需要。 此外,二维材料制造时的实时在线检测,对其生长的严格控制也十分关键。国家纳米科学中心研究员谢黎明介绍,为了揭示相关二维材料的生长机制,团队研发了高温原位光学成像技术,可在化学气相沉积系统内植入高温显微成像镜头,实现950℃下1微米空间分辨率的二维材料生长实时成像,从而揭示二维材料的生长动力学与生长机制,获得其生长速率、扩散速率等关键参数。 工欲善其事,必先利其器。基于高分辨率的在线观测,以及离线的扫描透射电子显微镜成像数据,团队发展出液相边缘外延生长方法和设备,实现了二硫化钼的全单层生长。 中国科学院物理研究所研究员张广宇团队则基于高质量二维二硫化钼晶圆生长的基础,通过界面缓冲层控制的新策略,在工业兼容的C面蓝宝石衬底上成功外延生长出2英寸的单层二硫化钼单晶薄膜。相较于硅,二硫化钼具有更强的电子控制能力,被认为是制造下一代芯片的理想材料。 瞄准功能“定制”目标 如何使用大规模集成二维材料制备的晶体管,制备运算速度更快、更省电的芯片?这样的芯片究竟长什么样? 张广宇说,从操控原子出发形成最终产品,使其具备结构上的原子精准和功能上的“定制”,是继微纳制造之后的下一代制造技术。当前,原子尺度的相关产品处于萌芽阶段,更多技术路线正在不断研发中。 “后摩尔时代的计算机芯片需要在工艺和架构方面突破经典架构,其中兼容半导体工艺的固态量子计算芯片是一种有竞争力的技术路线。”西安交通大学材料学院自旋电子材料与量子器件研究中心教授潘毅介绍,由高度相干的全同量子点构成的量子比特是构成固态量子芯片的基本单元。 为了制造全同的人工量子点,潘毅团队与德国PDI研究所合作,利用扫描隧道显微镜进行原子操纵,在砷化铟表面构筑了多个全同性良好的人工量子点。这种方法有望成为未来固态量子计算所需的大规模耦合量子点阵列的重要制造方式。 与会专家表示,以定向自组装诱导图形化工艺技术、冷阴极并行电子束直写刻蚀装备技术、大规模扫描探针装备技术、X光光刻装备技术等为代表的加工技术也在不断完善和发展,为工业级别的大规模原子制造提供支撑。
  • 《河南大学纳米材料工程研究中心发布纳米材料制备化学研究方向》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-03-14
    • 河南大学纳米材料工程研究中心(简称“中心”)依托节能减阻添加剂教育部工程中心、河南省纳米材料工程技术研究中心及河南省纳米杂化材料工程研究中心组建,纳米杂化材料应用技术国家地方联合工程研究中心由国家发展和改革委员会于2015年12月批准建设。 研究方向 中心以国家战略和市场需求为导向,研究纳米材料宏量制备及应用中的基础科学问题和关键技术难题,发展高性能、多功能纳米材料的规模化制备技术,形成自主知识产权和关键核心技术。 中心设立纳米材料制备化学、纳米润滑材料、能源与环境催化以及有机功能材料等四个研究室和一个产业化中试基地。 纳米材料制备化学研究室 主要致力于纳米材料的制备化学研究,期望通过化学方法制备具有特种功能的纳米材料并开展其性能及应用研究。主要研究方向包括以下: ★储能与能量转换纳米材料 锂/钠离子电池电极材料 超级电容器材料 吸波材料 ★生物医用纳米材料 SiO2基纳米生物材料 复合纳米抗菌材料 仿生功能材料 ★纳米材料的宏量制备技术 少层石墨烯宏量制备 锂离子电池材料宏量制备 纳米润滑材料研究室 主要开展新型节能减摩材料和技术的应用基础和应用研究。主要研究方向包括以下: ★环境友好纳米添加剂 可分散性纳米微粒制备 纳米微粒润滑添加剂摩擦学 水基金属加工液添加剂 润滑材料组分、结构与性能演变规律 ★纳米复合薄膜 分子有序超薄膜及其摩擦学 有机、无机复合减摩抗磨涂层 仿生结构表面构建及性能调控 ★纳米复合钻井液 能源与环境催化研究室 长期致力于纳米光功能材料的设计合成及在光催化分解水、CO2光还原、有机污染物消除中的应用。主要研究方向包括以下: ★半导体光催化 缺陷态TiO2 硫属化合物 有机聚合物 理论计算 ★稠油降粘 稠油催化改质 稠油乳化降粘 ★生物电化学 双极电化学 电化学酶促合成 有机功能材料研究室 主要研究方向包括以下: ★ 螺烯化学 噻吩螺烯与双螺烯的设计与合成 噻吩螺烯与双螺烯的手性 手性噻吩螺烯与双螺烯的光电特性 类螺烯结构的设计与构筑 ★ 有机功能材料 基于并三噻吩的有机薄膜场效应晶体管(OFET) 基于二噻吩并噻咯的聚合物有机太阳能电池(OSC) 基于噻吩螺烯与双螺烯的自组装行为与纳微特性 基于环状四联噻吩的树枝状化合物的合成与物性 ★ 有机光化学 噻吩螺烯与双螺烯的光化学合成 稠合噻吩的敏化与光物理 荧光化学传感器 中试基地 主要研究方向包括以下: ★纳米材料制备化学 聚合物基纳米复合材料 低品油气资源开采纳米材料 纳米杂化阻燃剂 重金属污染土壤修复剂 节能减阻添加剂 ★纳米材料规模化制备 传质与梯度控制合成 纳米材料的纯化与分离 干燥、捕集与造粒 废水处理与资源化 随着技术开发与产业化工作的不断深化,河南大学纳米材料工程研究中心中试基地,逐步形成了以公司为工程技术开发核心,以国家工程中心为应用基础研究平台,以产业技术创新平台,为公共服务平台,以专业化众创空间为孵化企业培育基地,以纳米材料产业园为规模化企业产业化基地的全链式协同创新运营模式。 抢滩纳米材料前沿,实现“芯”突破 此前,500nm以下规格的电子级球形二氧化硅基本依赖进口,是我国高端电子封装制造的“卡脖子”材料,破解这一难题,对我国芯片产业链实现国产化,确保我国电子信息产业安全具有重要战略意义。 而解决这一尴尬局面的,正是河南大学纳米材料工程研究中心。这个“摸着石头过河”的研究中心,建成了全国唯一一家同时拥有小试、中试和工程验证试验平台及材料性能测试和评价实验平台的纳米材料与技术孵化基地。 针对高端电子封装材料的需求,中心采用液相法制备粒径可控的电子级球形二氧化硅,实现二氧化硅在微/纳米尺寸下的可控制备。 “项目通过原料纯化、反应条件调控和核心设备的研制,已实现20、50、100纳米的产业化,解决了我国依赖进口的尴尬局面。”中心总工程师张治军介绍,电子级球形SiO2实现进口替代,为芯片产业链的国产化战略实施提供基础原材料,确保了我国电子信息产业安全。 科技成果实现技术转化并最终实现产业化,才能真正服务于产业链升级。目前,研发团队正在思考,如何把纳米材料作为核心,上面延伸到原料,下至终极用户,完善产业链,更好地为国家做贡献。