《早期胃腺癌的临床和分子生物学特征》

  • 来源专题:重大疾病防治
  • 编译者: 蒋君
  • 发布时间:2023-06-05
  • 胃腺癌,即使在疾病的早期(局部)被诊断出来,也是一个主要的卫生保健负担,治愈率仍然很低,特别是在西方国家。除其他方面外,这种缺乏进展反映了早期诊断的不切实际,部分基于区域偏好的治疗方法的相当大的差异,以及胃腺癌细胞及其相关的肿瘤微环境(TME)根深蒂固的异质性。长期以来,临床试验一直采用经验性干预措施,假设所有早期胃腺癌都是相似的。尽管取得了一定的成功,但通过基因组和/或多组学分析确定的胃腺癌的特定分子亚型,包括Epstein-Barr病毒诱导的、DNA损伤修复缺陷、HER2阳性和PD-L1高亚型,这些方法的缺点可能被克服。未来的方法,包括复杂疫苗的可获得性,新的抗体技术,针对TME组件(包括成纤维细胞、巨噬细胞、细胞因子或趋化因子和T细胞)的药物,以及新的免疫检查点抑制剂,以及改进的基于组织和血液的诊断分析,似乎是有希望的。在这篇综述中,我们重点介绍了胃腺癌分子和细胞生物学的最新知识,总结了目前临床治疗胃腺癌的方法,并考虑了新的治疗和/或治疗策略的作用。
相关报告
  • 《三种分子生物学诊断技术对结核病诊断价值的比较》

    • 来源专题:结核病防治
    • 编译者:李阳
    • 发布时间:2016-03-24
    • 结核病临床表现多样给临床诊断带来了极大困难。实验室检查对于结核病防治及诊断起着不可或缺的作用,包括以全菌体为靶标的病原微生物检测、以细菌核酸为靶标的分子生物学检测和以机体免疫反应及其产物为基础的检测方法,其中分子生物学检测是近些年发展起来的检测方法,具有快速、特异度及敏感度高等特点。基于此,来自西安市结核病胸部肿瘤医院的5名研究人员以于2014年4月至7月期间收集的378份西安市结核病胸部肿瘤医院收治的经病理确诊或细菌学确诊的肺结核患者痰标本为分析样本,采用实时荧光RNA恒温扩增检测技术(SAT)、分枝杆菌核酸检测(PCR-荧光探针,TB-NTM-PCR)和多色巢式荧光定量PCR(Xpert MTB/RIF)同时对同一份痰标本进行检测,并以MTB 960快速液体培养及痰直接抗酸染色镜检结果为金标准来分析SAT法、TB-NTM-PCR法及Xpert MTB/RIF法对MTB的检出率,比较3种检测方法的差异,评估其在临床诊断中的价值,其相关成果发表在《中华结核和呼吸杂志》2015年第38卷第9期。 研究发现,378份痰液标本中涂片阳性93例(24.6%,93/378),MTB 960快速液体培养阳性188例(49.7%,188/378),SSAT、TB-NTM-PCR及Xpert MTB/RIF法检测的总体阳性率分别为37.6%(142/378)、37.8%(143/378)和53.4%(202/378);痰抗酸染色镜检及MTB分离培养均为阳性(即涂阳培阳)时,SAT、TB-NTM-PCR及Xpen MTB/RIF法检测的阳性率分别为84.6%(77/91)、91.2%(83/91)和96.7%(88/91),且基于x2检验的3种检测方法阳性率间差异有统计学意义(x2=8.014,P=0.0182);痰抗酸染色镜检阴性而MTB分离培养为阳性(即涂阴培阳)时,SAT、TB-NTM-PCR及Xpen MTB/RIF法检测的阳性率分别为61.9%(60/97)、44.3%(43/97)和80.4%(78/97),且基于x2检验的3种检测方法阳性率间差异有统计学意义(x2=26.864,P<0.01);痰抗酸染色镜检阴性且MTB分离培养也为阴性(即涂阴培阴)时,SAT、TB-NTM-PCR及Xpen MTB/RIF法检测的阳性率分别为1.6%(3/185)、6.5%(12/185)和16.8%(31/185),且基于x2检验的3种检测方法阳性率间差异有统计学意义(x2=29.061,P=0.018);痰抗酸染色镜检阳性而MTB分离培养为阴性(即涂阳培阴)时,SAT、TB-NTM-PCR及Xpen MTB/RIF法检测的阳性例数分别为3/5、5/5及5/5例。此外,以MTB 960快速液体培养和痰直接抗酸染色涂片镜检为金标准,3种检测方法中xpert MTB/RIF法的敏感度(87.6%,163/186)及阴性预测值最高(88.5%,185/209)且漏诊率最低(12.4%,24/193);SAT法特异度(98.2%,214/218)及阳性预测值最高(97.2%,138/142)且误诊率最低(1.8%,4/218);以960药敏试验结果为金标准,Xpert MTB/RIF法耐药基因检测的正确率为95.48%(148/155),敏感度为95.5%(128/134),特异度为95.2%(20/21)。 综上所述,SAT、TB-NTM-PCR和Xpert MTB/RIF法对结核病诊断均具有良好的辅助作用,其中Xpert MTB/RIF法无论对涂阳或涂阴肺结核均具有良好的检出率。
  • 《与五家使用AI工程生物学的合成生物学公司会面》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-09-24
    • 电视和广播称“人工智能即将来临”,它将接替您的工作并在国际象棋上击败您。 但是,人工智能已经来临了,它可以在国际象棋上击败您,这是世界上最好的。在2012年,Google还使用它来识别YouTube视频中的猫。今天,这就是特斯拉拥有Autopilot,Netflix和Spotify似乎“读懂你的思想”的原因。现在,人工智能正在改变合成生物学的领域以及我们如何设计生物学。它可以帮助工程师设计出新的方法来设计基因回路,并且通过已获得的巨额投资(过去10年中的12.3亿美元)及其正在破坏的市场,它可能对人类的未来产生重大影响。 人工智能的概念相对简单,它是具有推理,学习和决策行为的机器编程。一些AI算法(只是计算机遵循的一组规则)在这些任务上非常出色,以至于可以轻易胜过人类专家。 我们听到的关于人工智能的大多数信息都涉及机器学习,这是AI算法的子类,可以从数据中推断出模式,然后使用该分析进行预测。这些算法收集的数据越多,其预测就越准确。深度学习是机器学习的一个更强大的子类别,其中大量称为神经网络(受大脑结构启发)的计算层协同工作以增加处理深度,从而促进诸如高级面部识别(包括iPhone上的FaceID)之类的技术)。 [有关人工智能及其各个子类别的更详细说明,请查看本文及其流程图。] 无论AI的类型或用途如何,我们都处于计算革命之中,它将其卷须扩展到“计算机世界”之外。很快,AI将影响您服用的药物,燃烧的燃料,甚至是您用来洗衣服的洗涤剂。 特别是生物学,是人工智能最有希望的受益者之一。从调查导致肥胖的遗传突变到检查癌细胞的病理样本,生物学产生的数据非常复杂,令人费解。但是,这些数据集中包含的信息通常提供有价值的见解,可用于改善我们的健康状况。 在合成生物学领域,工程师寻求“重新连接”活生物体并为其编程以新功能,许多科学家正在利用AI设计更有效的实验,分析其数据并使用其来创建突破性的疗法。这是五家将机器学习与合成生物学相结合的公司,为更好的科学和更好的工程铺平了道路。 Riffyn催化干净的数据收集和分析 (加州奥克兰,成立于2014年,已筹集了2490万美元) 机器学习算法必须从大量数据开始-但是,在生物学上,要生成好的数据非常困难,因为实验耗时,繁琐且难以复制。幸运的是,有一家公司正在通过简化科学家的工作来解决这一瓶颈。 Riffyn基于云的软件平台可帮助研究人员标准化,定义和执行实验,并简化数据分析,这使研究人员能够专注于进行实际的科学研究,并使使用机器学习算法从他们的实验中获得更深刻的见识成为日常现实。 使用此平台,可以更有效地进行实验,从而导致成本大幅下降,生产率和质量得到改善,并且准备使用复杂的机器学习技术进一步分析数据。这意味着公司可以使用这项技术来开发用于癌症治疗的新蛋白质,并且他们可以比以前更快,更好地做到这一点。里芬(Riffyn)已经与15家全球生物技术和生物制药公司中的8家进行了合作-他们成立于五年前。 Microsoft Research Station B:汇集编程生物学的难题 (英国剑桥,于2019年正式启动) 合成生物学世界中有许多活动的部分,这使得尽可能简化和整合操作变得困难而至关重要。在过去的十年中,Microsoft Research的计算生物学部门B站一直在开发生物学的机器学习模型,以解决此问题并加快从医学到建筑的各个领域的研究。 它的努力也以各种新的伙伴关系的形式获得了回报。借助Synthace,它正在开发用于自动化和加速实验室实验的软件。 B站还与普林斯顿大学合作,通过利用基于机器学习的方法从生物生长不同阶段拍摄的图像中提取图案,研究生物膜背后的机制(与细菌菌落如何产生抗生素抗性有关)。 B站还与牛津生物医学公司合作,该公司利用这些机器学习功能来改善针对白血病和淋巴瘤的有前途的基因疗法。这也许是合成生物学影响最大的领域之一:设计与多种疾病作斗争的疗法。 Atomwise:深度学习解码结构蛋白设计的黑匣子 (总部位于美国加利福尼亚州旧金山,成立于2012年,已筹集了5100万美元) Atomwise正在通过其称为AtomNet的深度学习平台来应对药物开发,该平台可以快速对分子结构进行建模。它可以准确地分析小分子内的化学相互作用,从而预测针对埃博拉病毒至多发性硬化症等疾病的功效。通过利用有关原子结构的数据,Atomwise设计了新颖的疗法,否则将几乎不可能开发。 他们与包括Charles River Laboratories,默克,多伦多大学和杜克大学医学院在内的机构建立了众多学术和公司合作伙伴关系,这些机构正在提供许多现实世界的应用程序和机会来推动这项研究的发展。他们最近还宣布了与江苏汉寿药业集团的高达$ 1.5B的合作,该公司是今年最大的生物制药IPO之一。 尽管Atomwise的分子设计方法功能强大且可以有效抵抗多种疾病,但还没有一种完美的方法来进行计算发现。那就是Arzeda进来的地方。 Arzeda:使用从头深度学习重写蛋白质设计规则 (华盛顿州西雅图市,成立于2008年,已筹集了1520万美元) Arzeda是一家来自华盛顿大学贝克实验室的公司,利用其蛋白质设计平台(当然植根于机器学习算法)来对蛋白质进行工程改造,从工业酶到农作物及其微生物群落。 Arzeda完全从零开始(或从头开始)构建其分子,而不是优化现有分子,以执行自然界中未发现的新功能;深度学习技术对于确保其设计的蛋白质正确折叠(非常复杂的计算问题)并按预期发挥功能至关重要。一旦完成计算步骤,就可以通过发酵(就像啤酒一样)来生产新蛋白质,而绕过自然进化过程以有效地生产全新的分子。 分布式生物:彻底改变流感,癌症,蛇咬等的未来 (加利福尼亚州南旧金山,成立于2012年,由许可技术自筹资金) 在设计范围的另一端,Distributed Bio利用合理的蛋白质工程技术来优化现有的抗体,这些抗体是您体内的蛋白质,可以检测细菌并与其他引起疾病的入侵者抗争,从而创造出新颖的疗法。 Tumbler平台是该公司拥有的众多免疫工程技术之一(从通用流感疫苗到广泛覆盖的蛇抗蛇毒)。 Tumbler使用机器学习方法创建了超过5亿种起始抗体变体,以扩展和量化分子中哪些变化最有价值的搜索空间。然后,它会对序列进行评分,以预测它们在现实生活中与目标的结合程度,并使用“有价值的变化”信息进一步改善得分最高的序列。随着最高级序列的合成和在实验室中的测试,生产周期继续进行。最终,原型分子应运而生,以实现预期的治疗目的-自然界中不一定观察到这种现象,而是结合了所有可能的最佳特征。 Tumbler已帮助实现了超越传统单一靶标药物开发的广泛应用-从设计可同时与多个靶标结合的抗体到创建嵌合抗原受体T细胞(CAR-T)治疗(与Chimera Bioengineering一起)用于癌症治疗具有降低的毒性,此端到端优化平台大规模产生理想抗体的能力是空前的。 尽管这一进展令人兴奋,但人工智能并不是我们对自然界研究的普遍替代,也不是开发治疗人类疾病的唯一方法。有时,它在技术上可能没有用,甚至从道德上讲也不是合理的。随着我们继续获得这项技术的好处并将其日益融入我们的日常生活中,我们必须继续就合成生物学和AI创新的设计,实施和道德操守进行对话。我们站在科学和人类新时代的悬崖上。 ——文章发布于2019年9月19日