《提高拉曼散射基质的功能化技术及其在食品安全评价中的应用:综述近年来的研究趋势》

  • 来源专题:食物与营养
  • 编译者: niexiuping
  • 发布时间:2018-01-28
  • 本文简要讨论了不同类型的基体,讨论了增强的拉曼散射(SERS)活性基体的功能化技术,并介绍了功能化SERS衬底在食品样品中的应用。很明显,功能化技术提高拉曼散射(SERS)给了令人鼓舞的结果,它提供了可能性识别多个目标分析物在一个复杂的矩阵,从而可以作为一个强大的分析工具在实际应用在食品安全分析以及提高食品质量监测。

相关报告
  • 《半导体所撰写石墨烯基材料拉曼散射及其应用的综述论文》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-02-02
    • 中国科学院半导体研究所谭平恒研究员长期从事低维材料的拉曼光谱研究,特别是在石墨烯等二维材料的拉曼光谱方面积累了丰硕成果。最近,谭平恒研究员撰写了关于石墨烯材料拉曼散射及其应用的综述论文,目前已被英国皇家化学学会旗下期刊《 Chemical Society Reviews 》在线发表( http://doi.org/10.1039/c6cs00915h )。吴江滨博士为该论文的第一作者,谭平恒研究员为通讯作者。 该综述系统地回顾了近年来石墨烯基材料的拉曼光谱在基础研究和器件应用方面的进展。首先,该文章描述本征的单层石墨烯的一阶和二阶拉曼光谱,接着讨论了不同堆垛方式的多层石墨烯的拉曼光谱,并且介绍了拉曼光谱作为一种技术手段如何表征石墨烯的层数,探测单层和多层石墨烯中的共振现象及获得石墨烯材料的二维成像。该综述还系统地论述了如何运用拉曼光谱来探测单层或者多层石墨烯中的微扰,以及如何将这些机理拓展到其它的石墨烯基材料,如石墨烯量子点、碳点、氧化石墨烯和氧化还原石墨烯、石墨烯纳米带、化学气相沉积生长的石墨烯、 SiC 表面外延生长的石墨烯、石墨烯复合物以及石墨基二维异质结。最后该综述总结了拉曼光谱在表征石墨烯基光电器件方面方面的应用,这些器件包括石墨烯基场效应晶体管、石墨烯基能量存储器件、石墨烯基太阳能电池和有机光发射二极管、石墨烯基纳米电 - 力系统、石墨烯基范德华二维异质结。该综述论文对于从事石墨烯相关领域研究和应用的科研和技术人员都具有非常重要的参考价值。
  • 《【科学私享】IF=15.1!量子点用于食品安全评估的最新进展:综述》

    • 来源专题:食品安全与健康
    • 编译者:王晓梅
    • 发布时间:2024-07-15
    • 来源:ScienceShare | 科学私享  量子点用于食品安全评估的最新进展:综述  导 读 马里兰大学马培华博士等在国际食品Top期刊Trends in Food Science & Technology(Q1, IF2023=15.1)发表题为“Recent progress of quantum dots for food safety assessment: A review”的综述性论文。 对快速、灵敏和经济高效的食品安全评估方法的需求不断增长,引发了人们对创新分析技术的探索。今年的诺贝尔化学奖授予了量子点(QDs)的探索,量子点已成为实时检测和定量各种污染物(包括病原体、重金属和农药)的富有前景的工具。本综述旨在总结量子点在食品安全领域中的应用进展。我们讨论了量子点独特的光学特性,例如可调荧光和高光稳定性,这些特性使其比传统的荧光标记物更具优势。本综述深入探讨了各种功能化策略,这些策略赋予了量子点特异性和选择性,使其能够靶向多种污染物。我们还讨论了目前阻碍量子点技术在食品安全领域广泛应用的关键挑战,如潜在毒性、高生产成本以及与稳定性和干扰有关的问题。此外,本综述还探究了将量子点应用于食品安全的未来前景。通过提供一体化概述,本文为研究人员和专业人士提供了一个理解量子点在食品安全领域的潜力和局限性的宝贵资源。 综述亮点 获得诺贝尔奖的量子点 (QD) 可对食品污染物进行革命性的实时检测。 量子点具有可调荧光和通过功能化提高特异性等优势。 量子点面临的挑战包括潜在毒性、生产成本和食品安全方面的稳定性问题。 限制与前景 食品安全中的量子点(QDs)因其潜在的毒性,尤其是由镉等重金属制成的量子点,引起了极大关注。毒理学研究强调了这些材料可能导致的健康风险,包括肾脏损害、骨密度降低以及致癌效应。此外,QDs的纳米级尺寸会增加其在生物体内的吸收和生物利用度,导致生物浓缩效应,进而对人类和环境产生毒性。在微生物学测试中,QDs的毒性还可能干扰样品的表征,导致结果出现偏差。为了解决这些问题,研究人员正在通过绿色合成方法开发低毒或无毒的QDs,如CQDs、ZnQDs和SeQDs,并考虑通过用低毒材料封装有毒内核来解决这个问题。 高质量QDs的合成和功能化的高成本限制了它们在食品安全应用中的普及。成本因素包括昂贵的原材料、需要专用设备的复杂合成工艺、需要额外试剂的功能化步骤、涉及复杂表征技术的质量控制,以及对技术熟练人员的需求。大规模生产 QDs 和采用更简单的合成方法可以降低成本,为食品分析制定标准化规程也是如此。另外,开发能够同时检测多种污染物的QDs也将提高其效用和性价比,使其更易获得,更能满足食品分析的需要。 将基于 QD 的设备集成到现场食品分析中,可提供令人兴奋的实时结果,减少对复杂实验室分析的需求。结合材料科学、食品技术、毒理学和数据科学的跨学科努力有助于克服当前的挑战。具有不同功能的标准化QDs传感器阵列提供了一种多重检测的方法,可以实时捕捉广泛的数据,并同时监测多种分析物。此外,将基于QDs的传感技术与机器学习算法结合起来,可以增强数据分析和解释,为通用高精度快速食品分析阵列铺平道路,也为食品安全挑战提供全面的解决方案。 综述结论 QDs为解决不断变化的食品安全分析需求提供了一种革命性的方法。由于其特殊的光学特性,如可调荧光和卓越的光稳定性,QDs相较于传统标记物具有显著优势。QDs的功能化增强了其适应性,使其能够检测与食品相关的多种污染物,包括病毒、重金属和杀虫剂。 尽管存在潜在毒性、高成本和监管方面的挑战,QDs仍然具有作为快速、灵活、超灵敏的食品安全分析工具的巨大潜力。目前致力于克服现有限制的研究表明,QDs在这一行业的应用前景广阔。随着 QD 技术的发展,这些纳米粒子很可能会改变食品安全领域,提供更加可靠、快速和经济的解决方案。 图文赏析 图1.(a)不同量子点的光学特性;(b)微小的量子点在其能带之间具有更大的间隙。因此,当电子从高能态(在导带中)跳到低能态(在价带中)时,会释放出更多的能量。这种高能量对应于更高频率的光,这意味着发出的光在色谱上更偏蓝色;(c)量子点研究的里程碑,其中诺贝尔奖得主被重点突出。(关于该图例中颜色的解释,请读者参阅本文的网络版本) 图2. (a)量子点在体内的生物学命运;(b)量子点的细胞摄取机理。 图3. (a)量子点的结构,其表面可以由不同的基团修饰;(b)过去五年碳基量子点(CQD)不同应用的报告。 图4. (a)H2O2辅助合成高发光硫量子点(SQD)。通过自上而下的方法合成了明亮发光、颜色可调的SQD,其光致发光量子产率高达23%;(b)用于检测Ag+的SQD改性Au电极。Au电极表面通过直接滴加不同浓度的SQD分散液(2 mg/mL)进行改性,然后在40 ℃下干燥;(c)磁性捕获封装在MOF-5-NH2中的SQD,用于检测棒曲霉素(PAT)。采用 "瓶绕船"溶热法制造SQDs@MOF-5-NH2,所得的适配体传感器表现出对PAT检测的高灵敏度。(关于该图例中颜色的解释,请读者参阅本文的网络版本) 图5. (a)ZnS QDs的合成策略概述;(b)采用水性胶体法在环境中合成ZnSe/ZnS QDs。以10 mg/kg剂量给药的QDs在体内测量中未发生显著变化;(c)不使用镉直接水相合成核壳QDs。疏水指数和血浆蛋白结合亲和力的顺序为β-Lg > HSA > BSA。ZnSe(RH双键25 nm)和ZnSe@ZnS(35 nm)核@壳量子点的尺寸分布和自相关函数。 原文链接 https://doi.org/10.1016/j.tifs.2023.104310