《我国虚拟电厂的建设发展与展望》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-09-21
  • 我国可供参与虚拟电厂运营的可控资源体量庞大,其中,可调负荷资源5000万千瓦以上,用户侧储能规模约100万千瓦,电动汽车接近600万辆(每辆按5千瓦计算,相当于3000万千瓦储能),分布式电源装机规模超6000万千瓦,这其中还未纳入现存于各地区小型水电站的装机容量,且这些资源规模都还处于快速上升期。
    电力系统中,供需平衡是一项刚性约束,为了保障这种平衡,确保系统的安全可靠运行,我国针对需求侧开展了大量的工作。早期由于供给侧发电设备及电网的构建相对于电力需求的增长总是存在相应的时滞,导致长期电力供应紧缺,为了解决供需矛盾,我国采用“三电办”的管理模式,其主要是站在电力生产者的角度,通过行政命令手段开展用电管理工作,以减少用户对电力、电量的需求,该时期内用户参与调控被当做一项义务。随着时间的推移,我国电力供需形势发生变化,“硬缺电”变为了因电网运行方式不科学而造成的阶段性、季节性缺电,在此背景下需求侧管理的概念引入我国。与“三电办”模式不同,其主要通过有效的激励、引导措施,调动用户的积极性去改变用电方式,满足用户相同用电功能的前提下,降低电能的消耗,提升终端用能效率,其目的不仅仅是弥补电力供应紧缺,更主要是为了最经济有效地利用能源资源,充分发挥电力在能源市场上的作用。再往后发展便进入了电力需求响应阶段,从需求侧管理到需求响应虽然有相关继承性,但其存在本质性的区别,需求响应重在通过释放市场信号驱动用户自愿响应,而非采用强制性的行政手段,用户从刚性的“无机体”变为了弹性的“有机体”,该时期参与需求响应的资源主体主要以可调负荷为主。
    近几年,在可再生能源和电能替代发展战略下,电源端接入大量的可再生能源,供应侧呈现复合多元化的特点,整个电网也处于向数字化、智能化的互联互动转型的过程之中。传统需求侧管理已从单纯的能效和负荷管理拓展到了促进可再生能源消纳与智能用电方面。这就需要更加稳定、灵活性的技术来支撑系统转型。随着我国大规模可调负荷、分布式电源、储能等灵活性资源在配用电侧兴起,通过虚拟电厂(virtualpowerplant,VPP)对其实现聚合管理,使他们具备参与电网调控的能力,更多以微网、局域能源互联网的形式来做需求侧资源。在我国能源低碳转型的道路上,其也将作为支撑电力系统稳定运行的一个重要抓手。
    发展虚拟电厂是大势所趋
    VPP的的基本概念
    VPP的概念已提出20余年,本世纪初在德国、英国、法国、荷兰等欧洲国家兴起,并已有多个成熟的示范项目,其主要关注分布式能源的可靠并网,同时构筑电力市场中稳定的商业模式。同期北美地区推进相同内涵的“电力需求响应”,可调负荷占据主要地位。
    目前我国VPP发展处于起步阶段,同时采用以上两个概念,一般认为虚拟电厂的范畴含括需求响应,两者本质相同,是同时存在的两个概念,区别主要在于包含主体的变化,前者是对后者的补充与拓展,后者是前者的子集。VPP不仅聚合了可调负荷,还重点关注近几年正大规模发展的分布式电源(distributedgenerator,DG)及储能。
    结合已有研究和目前实践情况,虚拟电厂可以理解为是将不同空间的可调负荷、储能、微电网、电动汽车、分布式电源等一种或多种可控资源聚合起来,实现自主协调优化控制,参与电力系统运行和电力市场交易的智慧能源系统。它既可作为“正电厂”向系统供电调峰,又可作为“负电厂”加大负荷消纳配合系统填谷;既可快速响应指令配合保障系统稳定并获得经济补偿,也可等同于电厂参与容量、电量、辅助服务等各类电力市场获得经济收益。
    需要注意的是,虚拟电厂并没有改变现有资源与电网的连接方式,而是相当于一个智能的“电力管家”,通过通信技术与智能计量技术,进行有效聚合、优化控制和管理,形成更加稳定、可控的“大电厂”,实现发电和用电自我调节,为电网提供源网荷储售一体化服务。这些可控资源不受电网运行调度中心的直接调度,而是通过资源聚合商参与到电网的运行和调度中。
    VPP类比传统电厂
    虚拟电厂作为一类特殊的电厂参与电力系统的运行,具备传统电厂的功能,能够实现精准的自动响应,机组特性曲线也可模拟常规发电机组,但与传统电厂仍存在较大区别,归结为几点:一是形式不同。传统电厂指具有传统物理生产流程的集中式大型电厂。虚拟电厂不具有实体存在的电厂形式,相当于一个电力“智能管家”,由多种分布式能源聚合而成,等同于独立的“电厂”在运营。二是电能量流动方向不同。传统电厂能量流动是单向的,即电厂-输电网-配电网-用户。而虚拟电厂能量流动是双向的,也就是说VPP市场主体可以与电力市场实现实时互动。三是负荷特征不同。传统电厂的负荷通常是静态可预测的,而虚拟电厂的需求端是动态可调整的,要求负荷端去适应电网,在高峰时段可缓解尖峰负荷。四是生产与消费的关系不同。传统电厂的电力生产须遵循负荷端的波动变化,并通过调度集中统一调控。虚拟电厂参与主体的负荷端负荷可去适应电力生产,采用的是需求侧管理模式。
    VPP的应用现状
    目前虚拟电厂理论和实践在发达国家已成熟,各国各有侧重,其中美国以可调负荷为主,规模已超3千万千瓦,占尖峰负荷的4%以上;以德国为代表的欧洲国家则以分布式电源为主,德国一家公司整合了9516个发用电单元,总容量817万千瓦,提供了全德二次调频服务的10%市场份额;日本以用户侧储能和分布式电源为主,计划到2030年超过2500万千瓦;澳大利亚以用户侧储能为主,特斯拉公司在南澳建成了号称世界上最大的以电池组为支撑的虚拟电厂。
    “十三五”期间,我国江苏、上海、河北、广东等地开展了电力需求响应和虚拟电厂的试点。如江苏省于2015年率先出台了《江苏省电力需求响应实施细则》,2016年开展了全球单次规模最大的需求响应,削减负荷352万千瓦,2019年再次刷新纪录达到402万千瓦,削峰能力基本达到最高负荷的3%~5%。国家电网冀北公司高标准建设需求响应支撑平台,优化创新虚拟电厂运营模式,高质量服务绿色冬奥,并参与了多个虚拟电厂国际标准制定。
    VPP的社会经济效益
    近年来,我国电力峰谷差矛盾日益突出,各地年最高负荷95%以上峰值负荷累计不足50小时。据国家电网测算,若通过建设煤电机组满足其经营区5%的峰值负荷需求,电厂及配套电网投资约4000亿元;若建设虚拟电厂,建设、运维和激励的资金规模仅为400亿~570亿元。可见,相对于供应侧的电源建设成本,需求侧资源要廉价得多。需求侧资源开发得越充分,未来整体资源优化配置的效果就越好,既可降低电力成本,还能提升供电可靠性。
    我国可供参与虚拟电厂运营的可控资源体量庞大,其中,可调负荷资源5000万千瓦以上,用户侧储能规模约100万千瓦,电动汽车接近600万辆(每辆按5千瓦计算,相当于3000万千瓦储能),分布式电源装机规模超6000万千瓦,这其中还未纳入现存于各地区小型水电站的装机容量,且这些资源规模都还处于快速上升期。若将这些分散资源进行有效聚合,相当于建设约140台百万千瓦级煤电机组,可有效满足电力负荷增长和削峰填谷需求。
    VPP的三类资源主体
    虚拟电厂的发展是以三类可控资源的发展为前提的,分别是可调负荷、分布式电源、储能。这是三类基础资源,在现实中往往会糅合在一起,特别是可调负荷中间越来越多地包含自用型分布式能源和储能,或者经过组合发展出微网、局域能源互联网等形态,同样可以作为虚拟电厂下的一个控制单元。
    虚拟电厂按照主体资源的不同,可以分为需求侧资源型、供给侧资源型和混合资源型虚拟电厂三种。需求侧资源型虚拟电厂以可调负荷以及用户侧储能、自用型分布式电源等资源为主。供给侧资源型虚拟电厂以公用型分布式发电、电网侧和发电侧储能等资源为主。混合资源型虚拟电厂则由前两者共同组成,通过能量管理系统的优化控制,实现能源利用的最大化和供用电整体效益的最大化。
    可调负荷
    可调负荷资源的重点领域主要包括工业、建筑和交通等。其中工业分连续性工业和非连续性工业;建筑包括公共、商业和居民等,建筑领域中空调负荷最为重要;交通有岸电、公共交通和私家电动车等。可调负荷资源潜力受调节意愿和调节能力约束,调节意愿主要受激励和价格机制决定,同时也受调节能力影响,调节能力则主要随技术进步而不断提升。对工业负荷而言,其主要的可调节潜力来自于非生产性负荷和辅助生产负荷,根据工业行业的不同,其负荷可调潜力均有较大差异。对商业和公共建筑负荷而言,其可调负荷主要是楼宇的空调、照明、动力负荷,占整个楼宇负荷的25%左右。对居民负荷而言,其可调负荷主要包括分散式空调、电热水器、电冰箱、充电桩等,占家庭负荷的25%~50%左右,但受分布散、单点容量小影响,聚合难度较大。
    可调负荷资源在质和量两个方面都存在较大的差别。在质的方面,可以从调节意愿、调节能力、调节及聚合成本性价比几个维度来评判。总的来说,非连续工业是意愿、能力、可聚合性“三高”的首选优质资源,其次是电动交通和建筑空调。在量的方面,调节、聚合技术的发展和成本的下降,激励力度的增加都有助于资源量的开发。去年国家电网组织完成了建筑、工业、居民、新兴负荷四大领域22类典型行业负荷特性分析。研究表明,在政策、技术、补贴到位且客户自愿条件下,可调节负荷潜力巨大,如钢铁、水泥、电解铝、楼宇、居民用电负荷中的可调节比例分别可达20%、24%、22%、30%、50%。经测算,国家电网经营区可调节负荷远期理论潜力可达9000万千瓦;未来三到五年,通过加强技术研发、完善补贴政策和交易机制,可力争实现4000~5000万千瓦,约占最大负荷的5%。
    分布式电源(分布式发电)
    根据GB/T33593-2017定义,分布式电源指的是接入35千伏及以下电压等级电网、位于用户附近,在35千伏及以下电压等级就地消纳为主的电源。包括太阳能、天然气、生物质能、风能、水能、氢能、地热能、海洋能、资源综合利用发电(含煤矿瓦斯发电)和储能等类型。
    当前我国对分布式电源的界定和统计还处在不够严谨的状态。据初步统计,截至2018年底,我国分布式电源装机约为6000万千瓦,其中,分布式光伏约5000万千瓦;分布式天然气发电约为300万千瓦,分散式风电约为400万千瓦。在这里,一些符合条件的小水电未被纳入,小型背压式热电也因争议大暂未被作为分布式发电。而实际上站在虚拟电厂的角度,对分布式发电资源的界定在于调度关系,凡是调度关系不在现有公用系统的,或者可以从公用系统脱离的发电资源,都是可以纳入虚拟发电的资源。从这个意义上来说,实际上所有自备电厂都是虚拟电厂潜在的资源,事实上在国际上这也是常用做法。
    分布式燃机在国际上是分布式发电的主力军,但在我国的发展因受气源和电网两头压制而举步维艰,与2020年达到1500万千瓦的规划目标差距较大。据一些文献资料,2025年我国分布式电源技术可开发潜力约16亿千瓦。其中光伏、风电、天然气发电和生物质发电占比分别为79.9%、15.5%、3.1%和1.5%;经济可开发潜力约2亿千瓦。
    目前我国分布式发电发展较好的是江苏和广东两省。江苏省截至2019年底,分布式光伏664万千瓦,天然气分布式能源项目已核准46个、发电装机总容量122万千瓦,其中区域式分布式能源项目11个、发电装机总容量105万千瓦,楼宇式分布式能源项目35个、发电装机总容量17万千瓦,但由于气价、电价等相关因素,部分天然气分布式能源项目存在停建、建成停运状况。
    截至2019年底,南方电网经营区域内分布式能源总装机容量约545万千瓦。其中,分布式光伏装机容量395万千瓦,分散式风电装机容量0.7万千瓦,天然气分布式发电装机容量149万千瓦,占天然气发电装机容量的6.2%,主要分布在广东珠三角地区。
    储能
    储能是电力能源行业中最具革命性的要素。储能技术经济特性的快速发展,突破了电能不可大规模经济储存的限制,也改变了行业控制优化机制。按照存储形式的区别,储能设备大致可分为四类:一是机械储能,如抽水蓄能、飞轮储能等;二是化学储能,如铅酸电池、钠硫电池等;三是电磁储能,如超级电容、超导储能等;四是相变储能。据中关村储能产业技术联盟不完全统计,截至2019年12月,全球已投运电化学储能累计装机为809万千瓦,我国171万千瓦,初步形成电源侧、电网侧、用户侧“三足鼎立”新格局。
    目前储能发展较好的省份包括河北、江苏和广东,也正好是几个开展了虚拟电厂试点的省份。
    资源聚合商是VPP的关键市场主体
    资源聚合商在虚拟电厂中属于中间环节也是关键环节,是虚拟电厂架构中最重要的参与主体,主要依靠互联网、大数据技术,整合、优化、调度、决策来自各层面的数据信息,增强虚拟电厂的统一协调控制能力。
    作为专业的“授权代理机构”,可为用户提供的服务类型归纳如下:一是可以通过调节用户负荷来提供削峰填谷等辅助服务,调配各种可控资源来提供发电容量,为市场提供更多、更灵活的服务和技术。根据数量值、速度要求,以投标的方式获得提供辅助服务并取得相应补偿的约定。在响应时刻通过负荷的柔性调节,或者通过风电、光伏等分布式电源的协调控制策略来共同完成目标。二是可为终端用户提供智能用电方案,优化生产方式,达到节能增效的目的。聚合商可以代理可控负荷的购电业务,以可控负荷的用能成本最小化为目标,引导用户优化响应行为。同时,聚合商还需对电能量市场价格波动进行预测,决策可控负荷的用电行为,达到降低电费的目标。三是引导分布式电源、储能等分布式能源以最佳的方式参与电力市场交易。包括签订交易合约、确定竞价方式等问题,并要达到预期的利润水平。
    资源聚合商把可控资源集合起来,去参与电力市场,相比单独的个体去参与市场效率更优,这就为资源聚合商带来了业务空间。对于盈利模式,可以大概理解为其类似于一个交易中间平台,一方面其可以向可控资源收取一定的服务费来帮助其参与电力市场交易;另一方面也可以获得一定的需求响应补偿费用差价。另外值得重视的一点是,资源聚合商通过这种方式还可以更快速地获得用户资源,事实上,优秀的资源聚合商在市场化环境下,不断挖掘有效资源,寻找与用户的黏性,这才是能源服务市场的核心竞争力。很多大型电力用户都可能是资源聚合商的目标客户。单纯地参与电力市场或许利润不会太高,但却能因此更深入地挖掘用户,进而开发出更多的能源服务项目。
    虚拟电厂的三个发展阶段
    虚拟电厂的三类基础资源都在快速发展,所以虚拟电厂自身的发展空间也在快速拓宽。但并不是有了资源虚拟电厂就自然发展出来了,而是要有必要的体制机制条件为前提。依据外围条件的不同,我们把虚拟电厂的发展分为三个阶段。
    第一个阶段我们称之为邀约型阶段。这是在没有电力市场的情况下,由政府部门或调度机构牵头组织,各个聚合商参与,共同完成邀约、响应和激励流程。第二个阶段是市场型阶段。这是在电能量现货市场、辅助服务市场和容量市场建成后,虚拟电厂聚合商以类似于实体电厂的模式,分别参与这些市场获得收益。在第二阶段,也会同时存在邀约型模式,其邀约发出的主体是系统运行机构。第三个阶段是未来的虚拟电厂,我们称之为跨空间自主调度型虚拟电厂。随着虚拟电厂聚合的资源种类越来越多,数量越来越大,空间越来越广,实际上这时候应该要称之为“虚拟电力系统”了,其中既包含可调负荷、储能和分布式电源等基础资源,也包含由这些基础资源整合而成的微网、局域能源互联网。
    我国虚拟电厂发展展望
    从整个行业的发展来看,原来固有的大机组、超高压的供应侧的资源发展已经到了顶峰,取而代之的将是大规模的需求侧资源,这部分资源潜力巨大,是实实在在的,未来在电力系统中,需求侧资源大概率将成为主角。同时,它们不会以零散的形式存在,聚合商的作用也因此会越来越强,它可将供给侧和需求侧分散式的资源全部聚合起来,最终成为整个行业和生态的主角。
    从电力系统的控制和优化方式来看,当需求侧资源不断引入之后,接下来我们在能源互联网概念中提出的,以使用者为中心,将会越来越充分地实现,从而我国传统的自上而下的五级调度体系很可能将不复存在了。所有的聚合商、配电系统运营商,都成为同种性质的运营单位,他们聚合大量的需求侧资源,相当于是一个共享服务平台,从而代理这些资源在配电网侧实现平衡后再与大电网发生关系。所以,聚合商最终将成为一种跨空间的、广域的源网荷储的集成商,系统控制和优化的方式可变为自下而上的一种组织形态。

相关报告
  • 《虚拟电厂激发需求侧资源新活力》

    • 来源专题:可再生能源
    • 编译者:武春亮
    • 发布时间:2024-08-14
    • 近期,我国部分地区持续高温,多地启动迎峰度夏电力保供。随着 新型电力系统 建设的快速推进,分布式电源、电动汽车等新兴资源发展迅猛,源荷双侧随机特性凸显,传统“源随荷动”的电网运行调节方式发生转变,系统灵活性调节资源容量严重不足,各地迎峰度夏电力保供面临极大挑战。据国家能源局预测,今年度夏期间,全国用电负荷最高负荷预计同比增长超过1亿千瓦。“双碳”目标下,传统调节容量不足,如何挖掘新的灵活性调节资源、丰富电网调节手段成为当下研究的重点。 来源:微信公众号“中能传媒研究院” 陈宋宋 王舒杨 田传波 (中国电力科学研究院) 一、 虚拟电厂 成为电力系统调节的“生力军” 2023年9月,国家发展改革委等部门印发《 电力负荷 管理办法(2023年版)》和《电力需求侧管理办法(2023年版)》,提出建立和完善需求侧资源与电力运行调节的衔接机制,逐步将需求侧资源以虚拟电厂等方式纳入电力平衡,提高电力系统的灵活性。2023年11月,国家发展改革委办公厅、国家能源局综合司印发《关于进一步加快电力现货市场建设工作的通知》,提出推动储能、虚拟电厂、负荷聚合商等新型主体在削峰填谷、优化电能质量等方面发挥积极作用。 当前,需求侧可调节负荷、电动汽车、储能等调节资源未被充分利用,可调节潜力巨大,但需求侧各类资源具有点多面广、单体容量小、电压等级低、特性差异大等特征,亟需发挥虚拟电厂在市场环境下对各类小微资源组织协调的主动性,将数量多、分布广、单体规模小的需求侧资源“化零为整、聚沙成塔”,通过聚合方式,参与现货市场、辅助服务市场和市场化需求响应等,在电力供需平衡中实现高效率、规模化的调节,提升电力系统安全裕度,丰富电力安全保供手段。 二、把握好虚拟电厂的角色定位和概念内涵 虚拟电厂是指利用数字化、智能化等先进技术,将需求侧一定区域内的可调节负荷、分布式电源、储能等资源进行聚合、协调、优化,结合相应的电力市场机制,构成具备响应电网运行调节能力的系统。虚拟电厂是新型电力系统的重要组成部分,通过与电网友好交互发挥作用、产生价值,在服务电力保供、提升新能源消纳水平、丰富电力市场经营主体,以及优化全社会生产生活用能方式等方面发挥重要作用。 虚拟电厂具备四个核心特征。一是广域聚合,从对象维度强调需求侧分散灵活资源的跨空间广域聚合能力。二是可调可控,从能力维度强调通过资源协调优化,形成具有可调控外特性的集成系统。三是边界清晰,从管理维度强调电网调控边界,比如山西的虚拟电厂参与不了山东的调度,同时强调容量规模边界,聚合规模太小没有规模效应。四是共赢互动,从运营维度强调各方参与,保障虚拟电厂未来可持续发展。 虚拟电厂是需求侧资源的一种组织方式,不同于常规电厂。一方面,虚拟电厂与调度机构直接调度控制的电源互为补充,对于纳入调度调管范围的各类发电资源(如小水电、自备电厂),已有完善的控制和管理机制,其调节由调度直接控制实施,不应再纳入虚拟电厂由运营商进行调节,否则会造成调节效果下降和交叉控制,削弱电网整体调节能力。另一方面,虚拟电厂是对分散在不同地理位置和电网接入点的已建成的用户侧储能、可调节负荷等资源进行聚合,对现有“在网”资源优化调控,其发展由市场决定,盈利空间大时,项目主体多,盈利空间小时,项目主体少,不存在传统实体电厂建设的规划环节,无需重复“并网”,只需要根据相关政策要求接入新型电力负荷管理系统。 三、虚拟电厂建设应用需要系统性的技术支撑体系 总体来看,虚拟电厂关键技术主要包括三类:聚合技术、调控技术和运营技术。 聚合技术是通过动态聚合灵活资源,形成统一外特性及可量化的调节能力,是虚拟电厂调控与运营的基础。比较关键的内容包括融合“物理-市场-信息”的可调节资源动态聚合技术,强调分层分区的动态聚合过程,还有关于聚合外特性模型构建及调节潜力的量化评估、可信评估。聚合技术还面临较多挑战,比如如何提升动态聚合的可靠性和有效性,适应电网复杂调控场景等要求;如何提高外特性模型的准确性和适应性,持续跟踪匹配分布式资源技术形态的快速变化;如何利用大量多源快变数据实现调节潜力的动态评估等。 调控技术是考虑资源时空互补特性,开展资源的优化控制及协同,从而为精准响应电网运行提供支撑。由于虚拟电厂是分层分区的聚合过程,因此适合采用“云-边-端”协同的调控架构。另外,因为聚合的是大量离散分布的资源集群,通过自适应分布式控制技术,实现自主响应、就地控制与协同运行。调控技术也面临着许多挑战,比如如何进行云边端各层级任务快速分配与决策;如何构建低成本、高适用的虚拟电厂边缘设备与终端;如何实现实时性调节需求下的就地控制与精确跟踪等。 运营技术是面向多类型市场及多品种交易目标,形成具体的交易策略,实现虚拟电厂的经济低碳运营。比较核心的包括市场预测和成本收益模型构建,以及多元市场环境下的交易决策,比如最优投标策略、定价策略等。运营技术同样面临着一系列挑战,比如如何提高预测和决策准确性,应对市场波动和不确定性;如何基于市场信号更好引导用户参与电网互动;如何建立科学合理的价值量化评估体系等。 四、推动虚拟电厂规范化、常态化、规模化、市场化发展 虚拟电厂作为跨领域、融合性的新业态新模式,其发展需要政府主管部门和产业链上下游各方主体凝聚共识、共同努力。虚拟电厂规范化是前提,市场化是手段,规模化、常态化是目标,推动虚拟电厂高质量发展需出实招。 一是加强顶层设计。由政府主管部门出台虚拟电厂建设运营指导意见等政策,完善运行机制,从国家层面推进虚拟电厂的规范化、规模化、市场化、常态化发展。 二是加快标准研制。加快推动资源感知、系统交互、网络安全防护、入网测试等技术标准体系建设,推进虚拟电厂规范化发展。 三是完善市场机制。推动完善省级现货市场规则,逐步完善虚拟电厂资源参与各类市场的运作机制,设计保障各方利益的盈利模式,引导虚拟电厂运营商为用户提供标准化服务。 四是加强技术支撑。加强对虚拟电厂调节容量可信度评估、电网安全稳定运行影响评估、需求侧电力电量分析预测等关键技术研究,鼓励试点应用创新,探索差异化技术路线和商业模式。 五是强化宣传引导。面向各类资源主体宣传虚拟电厂的作用意义、实施流程等,形成行业共识,主动引导虚拟电厂相关舆论方向,推动构建虚拟电厂健康可持续发展的良好生态。
  • 《虚拟电厂能否成电力调节最优解?》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-07-03
    • 近日,记者从能链智电举办的虚拟电厂产品发布会上了解到,随着全国多地用电负荷激增,虚拟电厂对于调节电力负荷的价值愈发凸显,未来发展前景广阔。而能链智电的虚拟电厂相关业务,将在削峰填谷、电网协同调度、促进新能源消纳等方面发挥重要作用。 2023年第一季度,能链智电充电量达10.23亿度,占全国公用充电量的21%。作为中国充电服务第一股的能链智电近日刚完成新一轮增发,据了解,能链智电旨在为新能源汽车充电产业链各方提供行业级解决方案,包括规划设计、选址咨询、EPC工程、互联互通、运营运维、场站管理、非电服务,以及用户侧储能、光伏、虚拟电厂等一站式服务。 ●调节电力负荷作用显现 进入夏季,随着我国经济形势整体向好和气温逐步升高,全社会用电负荷激增。国家能源局最新数据显示,1至5月,全国全社会用电量达35325亿千瓦时,同比增长5.2%;中国电力企业联合会预计,正常气候情况下,今年全国最高用电负荷将达13.7亿千瓦左右,比2022年增加8000万千瓦左右;国家电网、南方电网均表示,近期经营区域内用电负荷持续走高。 记者在发布会上了解到,虚拟电厂通过信息技术和软件系统,能够实现分布式电源、储能、可控负荷、电动汽车等多种分布式资源的聚合和协同优化。其作为特殊电厂参与电力市场和电网运行的协调管理系统,对电力负荷调节作用愈发凸显。 而对于虚拟电厂可调控的负荷资源而言,工业负荷受限于生产计划、工艺因素,且设备多样复杂,难以统一调控;建筑领域,如空调负荷,其刚性调控会影响用户舒适度,柔性调控又过程复杂且效果延时;相对而言,电动汽车充电负荷相对灵活,可调性强,对时间要求较低且对用户舒适度影响较小。发布会指出,随着新能源的大规模接入和发展,虚拟电厂作为灵活的电力系统运营模式,可最大限度平抑新能源电力的强随机波动性,提高新能源利用率,已成为新型电力系统建设的重要抓手和典型实践。 能链智电创始人、CEO王阳介绍,去年夏季,在全国多地遭遇极端高温天气、湖北全省电网单日缺口最高达到440万千瓦的情况下,能链智电通过聚合武汉地区数家充电运营商多个充电场站,连续参与日前紧急型削峰需求侧响应,有效响应率达63.78%。“通过动态调整平台上电动汽车的充电时间,配合激励机制,鼓励电动车主错峰充电,避开用电高峰时段,达到了助力电网峰值负荷调节的作用。” ●能链智电助力电网智慧调度 近年来,随着新能源汽车渗透率的提高,电动汽车可调体量也在不断增大,是十分有效的灵活性调控资源。 中关村现代能源环境服务产业联盟秘书长李清举表示,大规模电动汽车入网和即插即充行为,带来电网峰谷差增加、电能质量下降等问题。“日益增长的电动汽车用电需求与配电网正常稳定运行之间的矛盾亟待解决。虚拟电厂作为智慧能源管理系统,综合平衡电网供给侧和需求侧,协调优化电网稳定性,有效解决新能源发电对电网的冲击,对提升电网安全保障水平、推动能源绿色低碳转型具有重要意义。” 能链智电虚拟电厂,以充电场站为核心场景,将分散的电动汽车、充电桩、储能设施、分布式光伏等负荷资源,通过云端进行高效聚合,形成可控的管理单元,并借助光储充柔性管理、智能调度、能量控制等方式,参与电力市场交易、响应电网调度需求、帮助充电场站降低用能成本,连接发电侧、电网侧、用电侧的绿色能源。王阳告诉记者,“在场站端,能链智电对所聚合的充电场站负荷进行统一管理和灵活调配,可根据电网调度需求,动态调整充电时间、充电功率,优化电网负荷,提升场站经济效益;在用户端,能链智电通过电价激励机制,形成对电动汽车用户的调配能力,引导其进行有序充电,并参与电网运行调度,达到平移负荷、削峰填谷的效果;在电网端,能链智电增强电动汽车与电网之间的车网互动能力,实现供给需求平衡,缓解电网压力。” 同时,能链智电还将依托虚拟电厂平台,逐步落地“光储充检服”一体化充电站,有效解决充电基础设施电力增容扩容、快速安全充电、电池健康检测等问题。 ●市场前景可期 根据能链研究院预测,从2022年至2030年,我国新能源汽车保有量将由1310万辆增长至1.45亿辆,预计公用充电量将从137亿度增长至3378亿度,电动汽车、充电桩、分布式光伏、储能设施等多种负荷资源,对电网构成挑战。中信证券预计,到2025年,虚拟电厂整体市场空间有望达到723亿元,到2030年,其市场空间或将达到1961亿元。 在此背景下,虚拟电厂未来将在降低电网运营成本、平抑电网峰谷差、实现精细化用能管理、促进新能源消纳、助力实现碳达峰碳中和目标等方面发挥重要作用。王阳认为,未来,在电动汽车这一细分领域,虚拟电厂可调节资源可发挥的市场空间巨大。“2022年,我国全社会用电量为8.7万亿度电,电动汽车用电量占比不足1%;而到2050年,在总电量不增长的情景下,电动汽车的充电量占比将达到10%。这意味着,2050年,我国3亿辆电动汽车的充电量将达到约8000万度。” 在未来整个中国的智能电力系统中,电动汽车充电将是非常重要的组成部分,电动汽车的充电行为对电网的影响不容忽视。与会专家指出,在这种情况下,需要依托数字化手段指导和调节用户端的充电行为。比如,根据用户需要用车的时间,在统一平台调整电动汽车充电行为:根据电动汽车充电服务商已建立起的连接主机厂、桩企、充电运营平台、充电场站、车主的产业链生态圈,基于历史充电数据及车主充电习惯的分析,通过控制充电桩和引导车主充电行为实现充电负荷的灵活调度。 在王阳看来,由于充电桩建设依赖本土电力增容资源,又需大量资本投入,“未来,我国将有至少3000家以上极度分散的市场主体,这就是未来广阔的中国充电服务市场。”