《在TiO2纳米片上固定的AuPd纳米颗粒的快速合成,可以有效地脱氢甲酸》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-06-11
  • 安全高效的储氢技术是氢能源广泛利用的关键技术之一。甲酸被认为是一种安全、方便的化学储氢材料。然而,高效非均相催化剂的缺乏阻碍了其实际应用。在此,我们提出了一种简便的浸湿沉积方法,用于合成以TiO2纳米片(AuPd/TiO2纳米片)为载体的超细AuPd合金纳米颗粒,并将其作为高效催化剂用于FA脱氢。在不同温度下煅烧TiO2纳米片,以改变催化剂的催化活性。AuPd /二氧化钛nanosheets - 400展览上活动催化英足总释放96%的总氢含量的初始周转频率值592摩尔H2摩尔−1金属h−1 25°C和活化能低11.8 kJ摩尔−1。详细的表征表明,AuPd中心的合金结构、TiO2纳米片的相态和结晶度以及AuPd纳米颗粒与TiO2纳米片基体之间的强电子传递相互作用是其优异的催化性能。

    ——文章发布于2018年6月8日

相关报告
  • 《纳米TiO2薄膜使玻璃实现“自清洁”功能》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-11-09
    • 生活中,我们经常会碰到各种由玻璃组成的物件,比如女生最常用的梳妆台,家里的窗户,汽车上的车窗,甚至是那些高楼大厦,外围的幕墙都是由玻璃组成。由于玻璃表面光滑,自然界的油性物质易结合灰尘粘附在其表面,所以玻璃表面很容易存在污渍,且单纯的水流无法清除干净。每当大扫除要清洗窗户的时候,如何快速、有效地把玻璃表面的污渍去掉,便是人们最大的烦恼,更不用提那一栋栋高楼大厦,满满的幕墙玻璃清洗起来更是一个巨大的工程。所以,为了解决这个问题,自洁玻璃应势而生。 据全球自洁玻璃市场报告显示,全球自洁玻璃市场规模已从2014年的8360万美元增长到2017年的9490万美元。预计到2025年全球自洁玻璃市值预计将达1.347亿美元,市场年增长率将超过4.60%,可见,自洁净玻璃存在着巨大的市场潜力。 1.自洁玻璃的介绍 自洁玻璃,指自身带有清洁功能的玻璃,通过对普通玻璃表面涂镀纳米半导体材料,使玻璃表面在太阳光激发下具有降解附着在其表面的有机污染物的能力。其中作为一类最重要的纳米半导体材料,使普通玻璃具有自清洁功能的就是二氧化钛。由于二氧化钛在(紫外线)光能的作用下能够产生良好的光催化特性和超亲水性,将有机物最终氧化成CO2和H2O等无机小分子,再利用其超亲水特性,雨水在膜层上铺开,充分冲刷玻璃带走污染颗粒,从而使玻璃达到自洁的效果。 2、二氧化钛的类别及比较 ①纳米TiO2与常规TiO2的比较 纳米TiO2比常规TiO2的光催化活性高很多,且纳米TiO2粒子的粒径小,有利于得或失电子,具有更强的氧化和还原能力。 ②纳米TiO2粉体与纳米TiO2薄膜比较 纳米TiO2粉体非常容易团聚,分散、保存问题较多,若为了实现长久的保存,需要将其分散到溶剂中,使其应用受到限制。而纳米二氧化钛薄膜是利用一定的涂膜方法在衬底上制备出一层纳米薄膜,且一般不需要特殊的储存方法,能够很方便地应用。 3.纳米二氧化钛薄膜的制取方法 纳米二氧化钛薄膜制取的方法有很多,包括基于溶液-凝胶技术的制膜方法、物理或化学气相沉积法、电沉积法、活性纳米TiO2粉末制膜法等。其中较简单易行的是活性纳米TiO2粉末制膜法,通过将高活性的纳米TiO2粉末均匀分散于有机成膜助剂中形成涂料,然后涂覆于基材上,再经干燥硬化后便可制得。
  • 《纳米工具箱生产新型多功能磁性纳米颗粒》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-04-07
    • 利用磁性细菌,创新的生物材料很快就能制造出来。德克·舒勒博士教授为首的一批大学的微生物学家拜罗伊特创造了一个新的、模块化系统基因重组细菌,因此这些病原体转化为细胞工厂多功能磁nanoparticles-nanoparticles集成众多有用的属性和功能。 这些纳米粒子具有良好的生物相容性和优异的磁性,是生物技术和生物医学领域的潜在新材料。研究人员在《小型期刊》上描述了他们的发现。 从磁小体到多功能纳米颗粒 磁性细菌属于磁旋螺属,它们的游动行为与地球磁场一致。细胞内的磁性纳米颗粒被称为磁小体,它们以链状的方式排列,从而形成了细胞内的罗盘针。 每个磁小体包括一个磁性氧化铁核,它被一层膜包裹着。除了脂质外,这种膜还包括一系列不同的蛋白质。在拜罗伊特大学(University of Bayreuth),微生物学家们有效地将具有生化活性的官能团与这些蛋白质结合起来。这些官能团来自不同的外来生物。 本研究中使用的技术始于涉及膜蛋白生物合成的细菌基因阶段。这些细菌基因与来自其他生物体的外源基因相连,这些外源基因调控各自功能蛋白的合成。 一旦这些基因被重新整合到基因组中,被重新编程的细菌就会产生磁小体来展示这些外来蛋白质。这些细菌被永久地固定在粒子的表面。 在分析中,膜蛋白与四个不同的功能基团(即外源蛋白)结合。这些官能团包括葡萄糖氧化酶,一种由霉菌产生的酶,它已经在生物技术上被使用,例如在糖尿病中作为“糖传感器”。 此外,一种由大肠杆菌产生的染料生成酶(其活性可以很容易地量化)和一种来自水母的绿色荧光蛋白被装载到磁小体的表面。来自lama(羊驼)的抗体片段代表第四官能团,它被用作多用途连接器。因此,这些细菌的基因编码具有所有这些特征,包括极好的磁小体磁化。 利用这一遗传策略,我们对细菌进行重新编程,使其产生磁小体,当受到紫外线照射时,磁小体会发出绿光,同时显示出新的生物催化功能。各种生化功能可以精确地安装在其表面。因此,活细菌的磁小体被转化成具有迷人功能和特性的多功能纳米颗粒。 德克·舒勒博士,贝罗伊特大学微生物系研究带头人和教授 舒勒博士继续说:“此外,当这些粒子从细菌中分离出来时,它们仍然保持着完整的功能——利用它们固有的磁性可以很容易地做到这一点。” 一个应用于生物医学和生物技术的基因工具箱 磁性小体的功能化当然不局限于拜罗伊特大学的微生物学家团队粘附在粒子表面的功能基团。相反,这些蛋白质可以毫不费力地被其他功能取代,从而提供了一个非常多用途的平台。 因此,基因重组为广谱工程磁小体表面铺平了道路。它为“遗传工具箱”提供了基础,帮助创建定制的磁性纳米颗粒,吸收不同的有用特性和功能。所有这些粒子的大小都在3-5纳米。 我们的基因工程方法是高度选择性和精确的,相比之下,例如,化学耦合技术没有那么有效和缺乏这种高度的控制。 Frank Mickoleit博士,研究第一作者和微生物学家,拜罗伊特大学 Mickoleit博士指出了这种新型生物材料的一个决定性的好处,“以前的研究表明,磁性纳米颗粒可能不会对细胞培养造成伤害。良好的生物相容性是粒子在生物医学中未来应用的重要前提,例如在磁成像技术中作为对比剂或在诊断中作为磁传感器。” “例如,在未来,类似的粒子可能有助于检测和摧毁肿瘤细胞。生物反应器系统是另一个应用领域。装备有微小催化剂的磁性纳米颗粒将非常适合这一目的,并使复杂的生化过程成为可能,”Mickoleit博士补充说。 对于在表面上显示不同官能团的纳米粒子具有巨大的应用潜力,特别是在生物技术和生物医学领域。 磁性细菌现在可以作为多功能纳米工具箱的平台,激发合成生物学领域的科学创造力。 它将启动进一步有趣的研究方法。 Clarissa Lanzloth B.Sc.,拜罗伊特大学微生物学家 Lanzloth在她在拜罗伊特大学的“生物化学和分子生物学”硕士学位论文的结稿中也参与了最新研究。