《在TiO2纳米片上固定的AuPd纳米颗粒的快速合成,可以有效地脱氢甲酸》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-06-11
  • 安全高效的储氢技术是氢能源广泛利用的关键技术之一。甲酸被认为是一种安全、方便的化学储氢材料。然而,高效非均相催化剂的缺乏阻碍了其实际应用。在此,我们提出了一种简便的浸湿沉积方法,用于合成以TiO2纳米片(AuPd/TiO2纳米片)为载体的超细AuPd合金纳米颗粒,并将其作为高效催化剂用于FA脱氢。在不同温度下煅烧TiO2纳米片,以改变催化剂的催化活性。AuPd /二氧化钛nanosheets - 400展览上活动催化英足总释放96%的总氢含量的初始周转频率值592摩尔H2摩尔−1金属h−1 25°C和活化能低11.8 kJ摩尔−1。详细的表征表明,AuPd中心的合金结构、TiO2纳米片的相态和结晶度以及AuPd纳米颗粒与TiO2纳米片基体之间的强电子传递相互作用是其优异的催化性能。

    ——文章发布于2018年6月8日

相关报告
  • 《纳米TiO2薄膜使玻璃实现“自清洁”功能》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-11-09
    • 生活中,我们经常会碰到各种由玻璃组成的物件,比如女生最常用的梳妆台,家里的窗户,汽车上的车窗,甚至是那些高楼大厦,外围的幕墙都是由玻璃组成。由于玻璃表面光滑,自然界的油性物质易结合灰尘粘附在其表面,所以玻璃表面很容易存在污渍,且单纯的水流无法清除干净。每当大扫除要清洗窗户的时候,如何快速、有效地把玻璃表面的污渍去掉,便是人们最大的烦恼,更不用提那一栋栋高楼大厦,满满的幕墙玻璃清洗起来更是一个巨大的工程。所以,为了解决这个问题,自洁玻璃应势而生。 据全球自洁玻璃市场报告显示,全球自洁玻璃市场规模已从2014年的8360万美元增长到2017年的9490万美元。预计到2025年全球自洁玻璃市值预计将达1.347亿美元,市场年增长率将超过4.60%,可见,自洁净玻璃存在着巨大的市场潜力。 1.自洁玻璃的介绍 自洁玻璃,指自身带有清洁功能的玻璃,通过对普通玻璃表面涂镀纳米半导体材料,使玻璃表面在太阳光激发下具有降解附着在其表面的有机污染物的能力。其中作为一类最重要的纳米半导体材料,使普通玻璃具有自清洁功能的就是二氧化钛。由于二氧化钛在(紫外线)光能的作用下能够产生良好的光催化特性和超亲水性,将有机物最终氧化成CO2和H2O等无机小分子,再利用其超亲水特性,雨水在膜层上铺开,充分冲刷玻璃带走污染颗粒,从而使玻璃达到自洁的效果。 2、二氧化钛的类别及比较 ①纳米TiO2与常规TiO2的比较 纳米TiO2比常规TiO2的光催化活性高很多,且纳米TiO2粒子的粒径小,有利于得或失电子,具有更强的氧化和还原能力。 ②纳米TiO2粉体与纳米TiO2薄膜比较 纳米TiO2粉体非常容易团聚,分散、保存问题较多,若为了实现长久的保存,需要将其分散到溶剂中,使其应用受到限制。而纳米二氧化钛薄膜是利用一定的涂膜方法在衬底上制备出一层纳米薄膜,且一般不需要特殊的储存方法,能够很方便地应用。 3.纳米二氧化钛薄膜的制取方法 纳米二氧化钛薄膜制取的方法有很多,包括基于溶液-凝胶技术的制膜方法、物理或化学气相沉积法、电沉积法、活性纳米TiO2粉末制膜法等。其中较简单易行的是活性纳米TiO2粉末制膜法,通过将高活性的纳米TiO2粉末均匀分散于有机成膜助剂中形成涂料,然后涂覆于基材上,再经干燥硬化后便可制得。
  • 《使用纳米颗粒点燃心血管疾病 新的纳米技术将比以往任何时候都更有效地检测动脉阻塞》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-12-12
    • 根据世界卫生组织的数据,心脏病和中风是世界上最致命的两种疾病,在2016年造成超过1500万人死亡。造成这两种全球健康危机的一个关键潜在因素是共同的状况,动脉粥样硬化,或脂肪沉积、炎症和血管壁斑块的积聚。到40岁时,大约一半的人会有这种症状,很多人没有症状。 美国南加州大学维特比生物医学工程系的研究人员发明了一种新的纳米颗粒,通过检测可能引发心脏病和中风的不稳定钙化,医生可以确定斑块何时变得危险。 研究——从博士生Deborah下巴Eun霁涌的监督下,小卡尔·雅各布博士和卡尔·雅各布III青年椅子,助理教授与格雷戈里·麦基合作,南加州大学凯克医学院的临床手术——发表在《皇家化学学会的《材料化学》杂志上。 当动脉粥样硬化发生在冠状动脉时,由斑块或钙化引起的破裂引起的阻塞可导致血栓形成,切断流向心脏的血流,这是大多数心脏病发作的原因。当这种情况发生在通向大脑的血管中时,就会导致中风。 “动脉不需要80%的堵塞才会有危险。动脉中有45%被斑块堵塞可能更容易破裂,”Chung说。“只是因为它是一个大的斑块并不一定意味着它是一个不稳定的斑块。” Chung说,当称为微钙化的小钙沉积在动脉斑块内形成时,斑块可能变得容易破裂。 然而,利用传统的CT和MRI扫描方法或血管造影来鉴别血管钙化是否不稳定并可能破裂是特别困难的,因为血管造影有其他风险。 该研究的第一作者Chin说:“血管造影需要使用导管,而导管是侵入性的,有组织损伤的固有风险。”“另一方面,CT扫描涉及到电离辐射,会对组织造成其他有害影响。” Chung说,传统影像的分辨率限制为医生提供了一个大尺寸钙化的“鸟瞰”,这可能并不一定是危险的。她说:“如果钙化是在微观尺度上,就很难分辨了。” 该研究小组开发了一种被称为胶束的纳米颗粒,它可以附着在自身上,并点亮钙化点,使成像过程中容易破裂的小块更容易被发现。 Chin说,这些胶束能够专门针对羟基磷灰石,一种存在于动脉和动脉粥样硬化斑块中的独特的钙。 “我们的胶束纳米颗粒对细胞和组织的毒性最小,对羟基磷灰石钙化高度特异性,”Chin说。“因此,这减少了识别有害血管钙化的不确定性。” 该团队已经在培养皿中钙化细胞上测试了他们的纳米颗粒,在小鼠动脉粥样硬化模型中,以及使用血管外科医生Magee提供的病人来源的动脉样本,这表明它们不仅适用于小动物,也适用于人体组织。 “在我们的研究中,我们证明了我们的纳米颗粒在最常用的动脉粥样硬化小鼠模型中与钙化结合,并且在来自患者的钙化血管组织中也起作用,”Chin说。 Chung说,研究小组的下一步是利用胶束颗粒用于靶向药物治疗动脉钙化,而不是仅仅作为检测潜在阻塞的手段。 “纳米粒子和纳米医学背后的想法是,它可以像亚马逊的运输系统一样,把药物运送到身体的特定地址或位置,而不是你不想去的地方,”Chung说。 她说:“希望这能降低剂量,但在不伤害正常细胞和器官过程的情况下,对疾病部位有很高的疗效。” ——文章发布于2019年12月9日