《研究揭示H3K27me3修饰和DNA甲基化对胚胎命运决定过程中的作用》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-03-05
  • 近日,中国科学院上海生命科学研究院生物化学与细胞生物学研究所景乃禾研究组,与北京大学汤富酬研究组的合作论文,以Silencing of developmental genes by H3K27me3 and DNA methylation reflects the discrepant plasticity of embryonic and extraembryonic lineages为题,在线发表在Cell Research上。该研究揭示了原肠运动时期胚胎不同部位细胞的DNA甲基化和H3K27me3修饰模式的变化规律,并发现了发育相关基因在胚外区域富集DNA甲基化修饰、在胚胎区域富集H3K27me3修饰的现象,阐明了两种表观调控机制对于介导胚外和胚胎部分细胞发育潜能的差异具有重要作用。

    细胞命运决定过程的调控机制是发育生物学及干细胞研究领域的关键问题之一。在小鼠胚胎早期发育过程中,具有全能性的合子细胞经过不断的细胞增殖后逐渐特化形成滋养外胚层(TE)和内细胞团(ICM)细胞。其中TE继而形成胚外外胚层等细胞,并最终形成胎盘组织等;ICM细胞则发育形成原始内胚层细胞和上胚层细胞,上胚层细胞经过原肠运动形成外、中、内三个胚层,将来发育形成完整个体。表观遗传调控在该过程中发挥重要作用。研究人员通过建立了基于少量细胞的染色质免疫沉淀技术和亚硫酸盐测序技术等,研究小鼠着床后胚胎不同部位细胞的组蛋白H3K27me3修饰和DNA甲基化修饰的变化规律和分布特点,发现并验证了着床后胚胎中发育相关基因在胚胎区域和胚外区域调控机制的差别及其对发育潜能的影响。这一研究结果为阐明不同表观调控对细胞命运及发育可塑性的影响、认识干细胞的全能性与分化潜能以及干细胞转化医学应用等提供了全新的视角和理论指导。

    研究工作得到了中国科学院干细胞与再生医学战略性先导科技专项、科技部和国家自然科学基金委的支持。数据收集工作得到了生化与细胞所动物实验技术平台、分子生物学技术平台、细胞分析技术平台的支持。

  • 原文来源:http://news.bioon.com/article/6718362.html
相关报告
  • 《单细胞测序揭示人类胚胎 DNA 甲基化动态》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2017-12-27
    • 2017 年 12 月 19 日,北京大学北京未来基因诊断高精尖创新中心、生命科学学院生物动态光学成像中心汤富酬研究组和北京大学第三医院乔杰研究组合作在国际知名学术期刊《自然遗传学》上在线发表题为“Single-cell DNA Methylome Sequencing of Human Preimplantation Embryos”的文章。该团队利用单细胞 DNA 甲基化组高通量测序方法,首次在单细胞分辨率对人类植入前胚胎发育过程进行了更加深入的分析,揭示了人类早期胚胎 DNA 去甲基化和从头加甲基化的动态变化、父母本基因组差异甲基化等关键特征。 在哺乳动物基因组上,胞嘧啶(主要是 CpG 二连体中的胞嘧啶)在 DNA 甲基化酶的催化下会发生甲基化。研究显示,DNA 甲基化对多个生物学过程都至关重要,如基因表达抑制、转座子转录活性调节、X 染色体的失活,以及基因组印记的维持等。北京大学汤富酬教授团队与北医三院乔杰教授团队长期密切合作,一直着力于探索人类发育过程中表观遗传学修饰层面的变化。该团队利用国际领先的微量细胞 DNA 甲基化组高通量测序技术,于 2014 年在国际上首次绘制了人类植入前胚胎发育过程中的 DNA 甲基化组图谱 (Guo et al., 2014),并进而于 2015 年首次绘制了人类原始生殖细胞的转录组和 DNA 甲基化组图谱(Guo et al., 2015),为深入理解人类早期胚胎发育过程中的两轮 DNA 甲基化组重编程过程的主要特征提供了重要参考。 为了进一步在单细胞分辨率研究 DNA 甲基化重编程过程的动态特征,该团队利用单细胞全基因组 DNA 甲基化组高通量测序技术,对人类植入前胚胎发育的各个关键阶段进行了单细胞、单碱基分辨率的系统研究,主要发现有: (1)首次发现了人类植入前胚胎发育过程中存在大量特异性的 DNA 从头加甲基化。此前研究显示在着床前的早期胚胎发育过程中只有大规模的 DNA 去甲基化。而此次研究数据显示,精子和卵细胞结合受精之后,在人类早期胚胎大规模 DNA 去甲基化的同时,也存在大量高度特异的 DNA 从头加甲基化,这表明在人类早期胚胎第一轮 DNA 甲基化组重编程过程中,全局的 DNA 去甲基化‘净结果’实际上是高度有序的大规模 DNA 去甲基化和局部 DNA 加甲基化两种分子过程相互拮抗产生的动态平衡的结果。该研究同时发现,这些 DNA 从头加甲基化起主导作用的区域主要集中在 DNA 重复序列区域,暗示 DNA 从头加甲基化过程对抑制潜在的转座子转录活性、维持基因组稳定具有重要的调控功能。 (2)首次发现从二细胞胚胎阶段开始父母本基因组上的剩余甲基化水平发生逆转,在同一个单细胞中母本基因组上的剩余甲基化水平显著高于父本基因组上的剩余甲基化水平。通过杂合 SNP 信息精准区分每个单细胞中父本和母本基因组 DNA 甲基化情况,该研究发现父本基因组去甲基化的速度远比母本基因组快,胚胎发育到二细胞阶段以后,父本基因组的 DNA 甲基化水平远低于母本基因组的 DNA 甲基化水平,而且这一特征一直持续到着床后的胚胎阶段。首次揭示了即使在第一轮 DNA 甲基化组重编程结束后,在着床后的胚胎以及胚外组织中父母源的 DNA 甲基化仍然是不对称分布的,母本来源的 DNA 甲基化记忆要多于父本来源的 DNA 甲基化记忆,对早期胚胎发育的潜在影响可能更大。 (3)首次发现 DNA 甲基化在早期胚胎卵裂过程中的不对称分配可以用来追溯同一个胚胎中每个细胞的遗传谱系。 此项研究工作首次实现了人类早期胚胎发育过程中 DNA 甲基化组重编程在单细胞分辨率和单碱基精度的深入研究,新的研究结果对于我们进一步理解 DNA 甲基化在早期胚胎发育过程中的动态、精准调控,父母本基因组甲基化差异,以及每个胚胎内部不同单细胞间 DNA 甲基化组的异质性都具有非常重要的意义. 北京大学生命科学学院生物动态光学成像中心朱平博士(现为中国医学科学院血液病医院血液学研究所副研究员)、郭红山博士、侯宇博士,以及北京大学第三医院博士生任一昕为该论文的并列第一作者;北京大学生命科学学院汤富酬研究员、北京大学第三医院乔杰教授、闫丽盈研究员为该论文的共同通讯作者。该项研究得到了国家自然科学基金、国家重大科学研究计划、北京市科学技术委员会、国家高技术研究发展计划、北京未来基因诊断高精尖创新中心的资助
  • 《研究揭示植物SUVH6酶催化位点特异H3K9甲基化的分子基础》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-01-07
    • 2022年12月29日,《美国国家科学院院刊》(PNAS)在线发表了中国科学院分子植物科学卓越创新中心段成国研究组与南方科技大学杜嘉木研究组合作完成的题为Molecular Basis of Locus-specific H3K9 Methylation Catalyzed by SUVH6 in Plants的研究论文。该研究揭示了植物中保守的SUVH6组蛋白甲基转移酶家族催化位点特异H3K9甲基化的新机制。该机制中,SUVH6家族N端一个未被解析的肽段结构可被染色质调控因子ASI1的BAH结构域特异识别。SUVH6-ASI1模块控制大多数SUVH6靶点上H3K9me2的沉积,并根据靶位点的位置对基因表达产生不同的调控模式,包括转录沉默或转录后调控。更重要的是,这种机制及其关键的氨基酸位点在植物中保守存在,表明SUVH6和ASI1之间存在共同进化。 作为真核生物异染色质的标志物,组蛋白H3K9甲基化在常染色质区域也起到调控作用。模式植物拟南芥中的H3K9me2主要由SUVH4(KYP)、SUVH5和SUVH6共同催化,且与DNA甲基化存在正反馈调节作用以增强该区域的异染色质化。其中,SUHV4是主要的催化酶,SUVH5和SUVH6作为辅助酶存在一定的功能冗余。然而,除了DNA甲基化介导的SUVH招募机制,植物中是否有其他机制更精细地决定SUVH催化的位点特异性尚不清楚。 该研究组分别在拟南芥和水稻中通过免疫沉淀质谱分析鉴定到SUVH6的一个互作蛋白ASI1。ASI1是段成国课题组发现的识别H3K9me2并控制RNA加工的AAE(Asi1-Aipp1-Edm2)复合体的一个关键组分(Duan et al., 2017;You et al., 2021;Zhang et al., 2021)。经过蛋白截断互作实验将互作定位到SUVH6家族蛋白N端一段未报道的保守肽段,生化证据表明该肽段对于SUVH6和ASI1的互作是必须的。段成国研究组与杜嘉木课题组合作,解析了ASI1-BAH结构域与SUVH-N端多肽的高分辨率晶体结构,发现了ASI1-BAH存在一个经典的芳香笼可以通过cation-π相互作用特异性识别SUVH6 N端的精氨酸残基,且该单个精氨酸残基对ASI1-SUVH6互作具有决定性作用。染色质免疫沉淀测序(ChIP-seq)分析表明,SUVH6结合的染色质位点绝大部分被ASI1覆盖,且ASI1与SUVH6在共同靶点上的定位依赖于这种互作,同时,点突回补材料也表明关键精氨酸的突变可直接影响SUVH6的染色质定位。H3K9me2 ChIP-seq分析表明,ASI1-SUVH6互作模块促进了靶位点上H3K9me2的沉积,并以位置依赖的方式影响基因的表达:促进转录沉默或转录后mRNA的全长转录本加工。ASI和SUVH6的N端多肽只存在于植物中,并在绝大部分植物中同时表达,暗示了其进化上的一致性。总之,该研究发现了植物中保守存在的一种H3K9me2自我增强正反馈回路。该通路与DNA甲基化介导的SUVH组蛋白甲基转移酶招募机制相互促进,增强H3K9me2在特定染色质位点的沉积。 研究工作得到中国科学院战略性先导科技专项、深圳市科技计划项目和广东省普通高校植物细胞工厂分子设计重点实验室等的支持。