《新技术旨在提高锂金属电池的使用寿命、安全性》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-03-13
  • 宾夕法尼亚州立大学的研究人员称,利用一种新开发的固态电解质间相(SEI),可充电金属锂电池有可能实现更高的能量密度、性能和安全性。

    随着对高能量密度锂金属电池(用于电动汽车、智能手机和无人机)需求的增加,SEI的稳定性已经成为阻碍其发展的一个关键问题,因为电池锂电极表面的一层盐层将其隔离,并传导锂离子。

    “这一层非常重要,是由电池中的锂和电解质之间的反应自然形成的,”机械与化学工程教授王东海表示。“但它的表现并不好,这导致了很多问题。”

    作为锂金属电池中最不为人所知的组成部分之一,SEI的降解促进了树突的形成,树突是一种针状结构,从电池的锂电极生长出来,对性能和安全性产生负面影响。研究人员今天(3月11日)在《自然材料》杂志上发表了他们解决这个问题的方法。

    王说:“这就是锂金属电池寿命不长的原因——相间生长,不稳定。”“在这个项目中,我们使用了聚合物复合材料来创建一个更好的SEI。”

    该增强型SEI由化学博士生岳高领导,是由聚合物锂盐、氟化锂纳米颗粒和氧化石墨烯片组成的反应性聚合物复合材料。这种新型电池组件的结构有薄薄的一层这种材料,这正是埃文·普大学(Evan Pugh University)化学教授托马斯·e·马洛克(Thomas E. Mallouk)的专长所在。

    马洛克说:“要实现稳定的锂界面,需要在分子水平上进行大量的控制。”岳教授和东海教授设计的聚合物与锂金属表面形成爪状键。它以一种被动的方式给了锂表面它想要的所以它不会和电解质中的分子反应。复合材料中的纳米片起到了机械屏障的作用,防止锂金属形成枝晶。”

    利用化学和工程设计,各领域的合作使该技术能够在原子尺度上控制锂表面。

    马洛克说:“当我们设计电池的时候,我们不一定要像化学家那样思考,一直思考到分子水平,但这就是我们需要做的。”

    该活性聚合物还降低了重量和制造成本,进一步增强了金属锂电池的前景。

    王说:“有了一个更稳定的SEI,就有可能将现有电池的能量密度提高一倍,同时使它们更耐用、更安全。”

    美国能源部车辆技术办公室和国家科学基金会支持这项工作。

    ——文章发布于2019年3月11日

相关报告
  • 《澳大利亚研究人员开发出提升水系锌电池使用寿命的技术》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2024-03-11
    • 转自全球技术地图 据ChemAnalyst网1月9日消息,澳大利亚新南威尔士大学(UNSW)的研究人员开发出提升水系可充电锌电池(AZB)使用寿命的技术,该技术可以有效解决阳极化学腐蚀问题,将电池寿命提高5-20倍。水系锌电池使用大容量锌金属阳极,并用盐水溶液电解质替代易燃有机电解质,具有容量大、安全性高的优势,可作为锂离子电池的替代品,但组件之间固有的不兼容性会导致阳极发生化学腐蚀,从而缩短电池的整体循环寿命。研究人员在电解液中加入浓度为1%的1,2-丁二醇,有效减轻了阳极腐蚀并减少了引发电池短路的树枝状锌沉积物,使电池循环寿命接近现有锂离子电池的性能水平。水系锌电池适用于从小型住宅及商业设施到中型社区存储单元及大型电网级设施的各种应用场景。
  • 《动力电池能量密度要与安全性平衡》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-07-16
    •  5月4日,杭州九堡客运中心门口,一辆正在行驶的面包车发生自燃。5月8日,郑州日产帅客EV在东莞某充电站自燃,致使多车严重损毁。6月5日,一辆江铃易至EX5在湖州长兴某小区发生自燃。6月22日,一辆欧拉iQ在保定市瑞兴路的国家电网充电站内自燃。6月28日,杭州余杭盛奥西溪铭座地下车库发生一起新能源汽车自燃事故……   “5月以来,电动汽车安全事故频发、‘火烧连营’。”原中国北方车辆研究所动力电池实验室主任、中国汽车动力电池产业创新联盟副秘书长王子冬坦言,目前电动汽车自燃事故还不能“归零”,给新能源汽车推广带来巨大的负面影响。   在近日举行的“动力电池安全设计及防护技术线上研讨会”上,王子冬反复强调,对电动汽车安全要有正确认识,在目前电池起火原因尚不明晰的情况下,动力电池能量密度的提升要与安全性寻求平衡优化。   电池自燃的根本原因是内部短路   “‘高温炎热的夏天更容易起火’的说法并不正确。”王子冬指出,从各个月份的电动汽车起火事件分布情况来看,除了12月的数量略少之外,其余各个月份都有超过4起严重起火事故,其中5、6月和11月是两个高峰期,这表明电动汽车起火事故在全气候条件下均易发生。   王子冬认为,电动汽车安全事故主要由动力电池热失控引起,但热失控仅是结果,其原因错综复杂。“现在电动汽车普遍配置了热管理系统,电池不太容易因为单一的热滥用而触发热失控。”他表示,解决电池安全问题,还要从更为复杂的角度对其诱因进行全面分析。   “说起热失控,一般都指向了电芯的热失控。”王子冬强调,这一观点很片面,电芯热失控只是其中的一部分,还有其他原因引起的热失控,比如,电池包内部的低压线束起火,局部高电阻导致高压线路升温、不合理的充电和维护方法等,“在电池包内没有相应的防护措施时,火势难以控制,形成热失控和蔓延,最终导致电芯起火,从而产生电芯热失控的假象。”   “车企在理解热失控时也经常感到困惑,因为当前电池热失控的定义或研究都是以电芯来设计的。”王子冬坦言,以电芯先入为主的思路,不利于实际工作中开展热失控的防护。   厘清电池包的热失控要回归本源,即“热”上。王子冬进一步说明,电池包热源来自多个方面:周围外界物体的热;短路或线路中高温电阻、电芯内阻电流作用产生热;过充或是低电压、大电流产生电化学反应产生热;正负极材料与氧气产生化学反应,以及气体膨胀都会产生热。   在王子冬看来,引发电池自燃的根本原因是内部短路。“加工制备时混入的金属杂质或产生的极片毛刺、电滥用、电解液浸泡不均等引发的局部析锂,都有可能划破电池隔膜,引发微小的内部短路。”王子冬称,这种微小的短路并不易被察觉会在电池内部持续产热,当热量堆积到一定程度就会引发电池热失控,致使电池起火。   电池能量密度与安全性成反比   王子冬进一步表示,近几年电动汽车安全事故呈现出一定趋势。“电动客车起火频次和占比逐年减少,而乘用车起火频次和占比总体上在上升,三元电池的使用是一个原因。”王子冬坦言,盲目追求高能量密度是问题的焦点,如何在高能量密度与提高安全性之间取得平衡,是当前业内亟待解决的一大难题。   各动力电池企业在不遗余力地创新。2019年9月,宁德时代推出了全新的CTP方案,改变了原有的电芯—模组—电池包结构,电芯直接集成到电池包。据了解,北汽EU5成为首款搭载该电池的车型,该电池包体积利用率提高了15%—20%,能量密度进一步提升至200Wh/kg,大幅降低了动力电池的制造成本。特斯拉、蜂巢能源均对CTP技术进行了布局。   比亚迪今年也重磅推出了刀片电池,设计上取消了纵梁、横梁,以电芯作为电池包结构的支撑件,使其体积能量密度从普通电池包的251Wh/L提高至332Wh/L。   “上述新技术没有隔离墙,这就要求电池确保万无一失,但目前还做不到。”王子冬直言,目前还没有真正弄清楚锂电池的着火原因、是什么环节出了问题、什么场景会出问题。“为了降低成本、多带电池,直接取消模组的做法值得商榷,有相当大的风险。”在他看来,理论上,电池能量密度与安全性成反比。动力锂电池成组时最关键、最核心的问题是安全和使用寿命,其影响因素除了电池自身工艺性和产品质量外,充电的安全性和热管理技术也至关重要,如果没有完善这两项技术,电池的安全性和长寿命循环就无法得到保证。   为应对动力电池自燃事故的发生,很多企业都在研究BMS(电池管理系统)。“如果电池受到外部影响,目前的BMS基本能够起到防护作用,但如果是电池内部出现问题,一般的BMS就不太管用了。”王子冬建议,BMS研究的重点应该在电芯的检测和事故前的监控上,BMS不能是“事后诸葛亮”。   电池设计要从整体系统优化   值得注意的是,目前有相当一部分安全事故集中在充电环节。王子冬指出,正常充电过程中引发的电池起火事故正逐年上升,其中有充电设备故障引起的,也有电池过充引发的。实际上,电动汽车在停止状态下也会自燃,这对电池安全管理提出了更高要求,不仅在运行过程中,在断电状态下也要对电池进行有效监管和防护。“断电后的监护,目前还是盲点。”   王子冬进一步表示,随着电动汽车保有量的上升和充电桩建设速度的加快,对充电方法和充电设施进行更加规范化的管理,对充电电池组进行有效的状态检测,十分重要。   目前,行业正致力于大功率直流快充的技术攻坚。王子冬提醒,快充对动力电池的要求很高,与之相伴的是,如何减小电池组在快充过程中单体电池之间的差异问题。“要实现快充,就必须在其它方面做出牺牲。”王子冬解释,快充会在锂离子电池内部产生大量热量,过高的温度会破坏负极材料的粘接性能,从而导致负极活性物质的脱离,使电池可逆容量快速衰降、电池性能劣化,严重影响动力电池的使用寿命。   王子冬表示,行业已经在减小电池级片的厚度、改变电池结构,以及选择更合适快充的材料等方面进行调整。不过,这些都将增加动力电池的生产成本,电池设计需从整体角度进行系统优化。