《水稻株型驯化机制取得重要进展》

  • 来源专题:转基因生物新品种培育
  • 编译者: zhangyi8606
  • 发布时间:2019-05-10
  • 中国农业大学农学院水稻研究中心在水稻驯化机制研究上再次取得重要进展,他们发现了一个编码TCP家族转录因子的基因TIG1控制水稻株型的驯化。相关研究成果4月16日在线发表于《分子植物》(Molecular Plant),题目为“Natural Variations at TIG1 Encoding a TCP Transcription Factor Contribute to Plant Architecture Domestication in Rice”。

    亚洲栽培稻(Oryza sativa L.)由其野生祖先种普通野生稻(O. rufipogon Griff.)驯化而来,在驯化过程中,诸多性状发生了改变。在株型上,野生稻表现较大的分蘖角度,以获取更多的水分、养分和阳光,有利于自然环境下生存繁衍;而栽培稻则多为直立株型,有利于增加密度、提高高产,且便于收获。

    孙传清教授团队长期致力于水稻株型驯化机理研究,并取得了一系列的重要进展。之前的工作揭示了PROG1基因的突变导致了由野生稻匍匐生长向栽培稻直立生长的转变,不仅株型得到改良,而且穗粒数增加、产量大幅度提高。然而发现有些野生稻尽管携带了与栽培稻相似的prog1,而株型表现为倾斜生长,分蘖角度依然较大,但其机理不清。

    为了进一步揭示水稻株型驯化的调控机制,研究人员利用一个分蘖倾斜生长的野生稻渗入系,通过图位克隆,鉴定了控制倾斜生长表型的基因TIG1(Tiller Inclined Growth 1),该基因编码一种TCP家族的转录因子。野生稻中TIG1基因特异地在分蘖基部的远地侧高表达,通过激活EXPA3,EXPB5 和 SAUR39 等下游基因的表达促进该部位的细胞伸长,从而维持较大的分蘖角度。在水稻驯化过程中,籼稻tig1基因的启动子区发生自然变异,使该基因在分蘖基部远地侧内的表达水平显著降低,从而导致分蘖角度减小,水稻株型由倾斜生长转变为直立生长。籼稻tig1周围区域的核苷酸多态性降低,表明该基因在籼稻中受到了人工选择。TIG1基因的克隆不仅为揭示水稻分蘖角度的调控机制提供了重要线索,而且为深入阐释水稻驯化过程中株型演变的分子机理提供了新的认识。

    已毕业的张卫峰博士为该论文的第一作者,孙传清教授和朱作峰教授为通讯作者。本研究得到了国家重点研发计划七大农作物育种专项和国家自然科学基金的资助。

相关报告
  • 《稻田土壤铁-氮耦合的微生物机制取得重要进展》

    • 来源专题:农业立体污染防治
    • 编译者:金慧敏
    • 发布时间:2014-12-18
    •   稻田土壤是一种典型的人工湿地系统,其周期性的干湿交替导致了系列的氧化还原反应。由于稻田土壤的这一特性以及丰富的铁(Fe)含量,异化Fe(III)还原现象普遍存在于淹水稻田土壤中,并被认为可调控其他元素的生物地球化学过程。施氮(N)肥(尿素或氨)是人们为了维持稻田土壤肥力和增加水稻产量的一种重要农业管理措施。已有研究表明,在其他生境,如湿地和热带森林土壤中发现异化Fe(III)还原与N元素循环之间存在联系,然而人们对稻田土壤中微生物介导的异化Fe(III)还原与N元素循环相耦合的过程知之甚少。   鉴于稻田土壤在全球农业生产和生态环境功能中的突出地位,中科国学院生态环境研究中心朱永官课题组对我国稻田土壤中的Fe-N耦合过程进行了一系列研究。首先,他们选取我国南方第四纪红土母质发育的稻田土壤,通过室内泥浆厌氧培养手段,以13C-乙酸盐为底物,分别添加水铁矿和针铁矿作为唯一末端电子受体,采用基于rRNA的稳定性同位素探针(rRNA-SIP)结合基于16S rRNA的454高通量测序技术,研究了长期施N肥(尿素)对稻田土壤中依赖于乙酸盐同化的Fe(III)还原微生物群落的影响。他们首次揭示了长期施N肥能够促进稻田土壤中Fe(III)还原过程以及改变依赖于乙酸盐的Fe(III)还原细菌的群落结构。此外,他们还发现尽管不同形态的铁矿对Fe(III)还原细菌的类群具有选择性,水铁矿和针铁矿的添加均刺激了两种土壤中Geobacter属的增长,且长期施氮肥导致其增长幅度更大。这些结果暗示着长期施N肥在微生物介导的稻田土壤Fe的生物地球化学循环中的重要性,强调了元素生物地球化学循环之间复杂的相互作用。这一研究成果发表在自然出版集团的The ISME Journal(Ding et al., ISME J., 2014, DOI: 10.1038/ismej.2014.159)上。随后,他们以一个第四纪红土母质发育的时间序列稻田土壤为对象,采用基于15N-NH4+(15NH4+)的稳定性同位素示踪以及乙炔(C2H2)抑制技术,首次证明了稻田土壤中存在铁氨氧化过程,即在厌氧条件下,以Fe(III)为电子受体,Fe(III)被还原为Fe(II)的同时铵(NH4+)被氧化为氮气(N2),或亚硝酸盐(NO2–),或硝酸盐(NO3–)的过程(图1),其中,直接生成N2是稻田土壤中铁氨氧化过程的主要途径。此外,他们还发现水稻耕作可提高土壤微生物可还原Fe(III)水平,促进铁氨氧化反应,从而刺激土壤中N损失,通过估算发现铁氨氧化过程造成的N损失约占我国氨肥田间施用量的3.9–31%,推测此过程是稻田土壤N损失的潜在重要途径之一,可能影响到对陆地生态系统氮素损失的估算。这一研究成果发表在Environmental Science and Technology(Ding et al., Environ. Sci. Technol., 2014b, DOI: 10.1021/es503113s)上。
  • 《水稻理想株型基因超高产等位位点的克隆与作用机理解析取得重要进展》

    • 来源专题:转基因生物新品种培育
    • 编译者:Zhao
    • 发布时间:2017-03-22
    • 水稻株型是决定水稻产量的主要因素之一,也是决定抗倒性的主要农艺性状,水稻理想株型的塑造是提高水稻产量的重要途径。控制水稻理想株型的主基因IPA1 (Ideal Plant Architecture 1) 编码一个含SBP-box的转录因子,参与调控多个生长发育过程。我国近些年培育的很多超级稻品种都具备理想株型特征,然而其分子遗传调控机制一直没有得到挖掘。中国科学院遗传与发育生物学研究所李家洋研究组与中国科学院植物生理生态研究所何祖华研究组等合作,在水稻理想株型优异等位位点克隆及精细调控机理上取得新进展。 利用超级稻品种甬优12的原始育种品系,通过图位克隆的方法,克隆了调控株型的主效位点qWS8/ipa1-2D,该位点位于IPA1基因上游的一段大片段三元串联重复序列,这一基因组结构变异导致了IPA1启动子区甲基化水平降低,IPA1基因表达量上升,从而使植株出现理想株型的表型,并同时具有适当的分蘖数。根据基因组重测序结果,推测该新位点大约上世纪60年度起源于我国东南沿海。。进一步研究表明,IPA1对株型有着精细的剂量调控效应,利用IPA1的不同等位位点,实现IPA1的适度表达是形成大穗、适当分蘖和粗秆抗倒理想株型的关键。利用ipa1(现定名为ipa1-1d )及ipa1-2d新位点,与嘉兴农科院合作育成了嘉优中科系列品种,增产效果显著,实现了超级稻新品种的分子设计育种。该研究为今后水稻理想株型的分子设计育种提供了重要遗传资源和技术途径,并为进一步解析水稻株型精细调控机理和水稻新品种设计培育奠定了基础。 上述研究成果于2017年3月20日在Nature Communications杂志在线发表(doi:10.1038/ncomms14789),植物生理生态研究所何祖华研究组毕业博士生和植物逆境中心李建明研究组博士后张林与遗传发育所李家洋研究组副研究员余泓博士为该论文的共同第一作者,何祖华研究员和李家洋研究员为共同通讯作者。该研究得到了农业部转基因专项,国家重点研发计划,中国科学院先导项目和国家自然科学基金项目的资助。