《白色涂料能使表面比周围环境更凉爽》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-10-23
  • 科学家发明了一种白色涂料,即使在阳光直射下,它也能冷却表面使其低于周围环境温度。他们的研究发表在10月21日的Cell Press细胞出版社旗下期刊Cell Reports Physical Science上,展示了一种可用于商业涂料的辐射冷却技术,这种技术的制造成本更低,并且能被动地将到达表面95.5%的阳光反射回外层空间。相比之下,目前市场上的商用“拒热涂料”只能反射80%~90%的太阳辐射,不能达到低于环境温度的效果。

    在夏季和气候温暖的地区,大多数建筑依靠传统的空调系统将热量从室内传递到室外。这些系统需要消耗能源,并释放出多余的热量,把城市变成了“热岛”,加剧了气候危机。尽管自20世纪70年代以来,科学家一直在寻求开发辐射冷却涂料,但之前开发的涂料不能反射足够的阳光,也不能作为传统空调可行、可商业化的替代品。

    这项研究的作者之一、美国印第安纳州普渡大学机械工程学院教授阮秀林说:“开发一种低环境辐射冷却方案是一项持久任务,这种方案能够提供一种方便的单层颗粒基体涂料形式,且可靠性高。这对辐射冷却技术的广泛应用和缓解全球变暖效应至关重要。”

    为了开发商业应用辐射冷却涂料,阮秀林和同事使用了碳酸钙填料——一种地球上充足的化合物,而不是标准的二氧化钛粒子。碳酸钙有大量带隙(价电子带和传导电子带底部之间的能差),因此有助于减少涂料吸收的紫外线量。研究人员还利用了60%的高粒子浓度来促进阳光散射以及宽粒子尺寸分布而不是单粒子尺寸来实现高效的宽带散射。

    为了证明这些改变如何更好地增强了涂料的辐射冷却能力,研究人员在印第安纳州的西拉法叶进行了为期两天的冷却测试。在夜间,涂料样品比环境温度低10℃,在太阳处于最高点时比环境温度低至少1.7℃。(在阳光直射下,冷却功率超过37W/m2。)该团队接着进行了第二次测试,其中一部分图案用新型涂料绘制,而另一部分则用同样厚度的商用白色涂料绘制。红外摄像机显示,这种碳酸钙基丙烯酸涂料在阳光直射下的温度比商业上的同类产品更低。

    阮秀林预计,该技术可能惠及广泛行业,包括住宅和商业建筑、数据中心、仓库、食品存储、汽车、户外电气设备、军事基础设施和多功能车辆等。这种涂料可以直接涂在建筑物上,以降低冷却成本。由于这种涂料没有金属成分,电信公司可能用它来防止户外设备过热,这是实现5G网络的重要一步。

    “这种涂料甚至还可以用来对抗气候变化,因为它排斥阳光并向太空辐射热量。”阮秀林说。

    接下来,研究人员计划进行长期的可靠性研究,测试涂料的抗紫外线、灰尘、表面附着、水和清洁剂等能力,以确保其作为商业产品的功能。

    阮秀林说:“我们的涂料与商业涂料的生产工艺相兼容,成本可能与之相当,甚至更低。关键是要确保其可靠性,这样它才能在室外长期使用。”

    相关论文信息:http://dx.doi.org/10.1016/j.xcrp.2020.100221

  • 原文来源:http://news.sciencenet.cn/htmlnews/2020/10/447387.shtm
相关报告
  • 《探火新材料,表面“热浪滚滚”,里面“凉爽宜人”》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-07-29
    • 7月23日长征五号遥四运载火箭成功发射,备受瞩目的火星探测器“天问一号”被送入预定轨道。 这是我国首次火星探测任务,将在完全陌生的火星环境下,一次性实现火星环绕、着陆和巡视三大任务,对火星开展全球性、综合性的环绕探测,并在火星表面开展区域巡视探测,这在世界航天史上也属于首例。 天问一号是通过一个着陆巡视组合体来完成着陆和巡视两项任务的。着陆巡视组合体包括进入舱和火星车两部分,进入舱负责着陆,火星车负责科学探测。 奔向火星的过程中,最大的难点在于在再入、下降与着陆过程中,要将探测器的时速从两万多千米/小时降低至0。如何做好探测器的热防护,关系着火星车能否安全到达火星表面开展相关工作,关系着“天问一号”探测任务的成败。 坠入火星,探测器都经历什么 与月球不同,火星上也存在大气层。虽然火星大气比地球要稀薄一些,但在着陆器高速进入情况下,与大气层的高速摩擦也会使着陆器表面温度急剧升高,就如同一颗流星一样,如果不进行有效的防护,就将烧毁在大气层中。 别看火星上大气密度只有地球的1%,但其大气中二氧化碳占95%,氮气占3%,与从地球轨道上返回的飞船相比,着陆火星的探测器在高热状态下会发生更加复杂的物理化学反应。人类探测火星起步于20世纪60年代,2020年之前共实施了44次火星探测任务,其中美国20次,苏联/俄罗斯20次,欧洲2次,日本1次,印度1次,任务形式包含掠飞、环绕、着陆及巡视探测。只有24次任务取得了成功或部分成功,成功率54.5%,可见火星探测器成功着陆的难度有多高。 为了安全地护卫“天问一号”成功着陆,中国航天科技集团有限公司一院703所根据探测器形状、不同部位所承受的气动载荷及热流密度的不同,“量体裁衣”创新研制了三种材料,分别是超轻质的蜂窝增强低密度烧蚀防热材料、连续纤维增强中密度防热材料和超轻质大面积防热涂层材料。 这三种材料协同作战,在探测器着陆的时候,材料表面与火星大气摩擦并发生复杂的物理化学反应,同时带走大量的热,同时材料内部还具有良好的保温隔热性能,虽然表面“热浪滚滚”,里面却依旧“凉爽宜人”,有效保护探测器不被烧坏。 新型防护材料有哪些过人之处 火星距离地球较远,为使运载火箭推送的更远,天问一号探测器的重量不能过大,因此对探测器防热结构的重量要求也达到了十分苛刻的程度,在如此严苛要求下又要完成热防护使命,因此必须采用最优化设计,尽可能“榨干”防热材料的防热性能和防热效率。 “天问一号”探测器着陆过程中,受热最严重的大底部分采用的是超轻质的蜂窝增强低密度烧蚀防热材料。这种材料可以说是空间飞行器防热的一员“老将”。“神舟”载人飞船、月地高速载入返回飞行器中,蜂窝增强低密度烧蚀防热材料都发挥了热防护的关键作用。 蜂窝增强低密度烧蚀防热材料材料样件 此次火星探测器上采用的是配方优化设计的新型超轻质蜂窝增强低密度烧蚀防热材料。跟它的“前辈”们相比,此材料强度更高、密度更低,并且可以根据承受的气动载荷分布对蜂窝格子进行变厚度优化设计,在保证探测器拐角部位能够耐受更严苛的气动载荷的情况下,使整个结构的材料重量更加轻质化。 探测器大底结构的直径达到3.4m左右,共计约70000个蜂窝格子,团队采用整体成型工艺,确保了在如此多的蜂窝格子中材料一次性灌注到位,不论是成型效率、成型质量还是成型可靠性都达到国际领先水平。整个探测器大底结构具有非常好的整体性,确保了其在奔向火星的过程中承受高低温交变的结构稳定性。 探测器大底大面积使用超轻质的蜂窝增强低密度烧蚀防热材料 除了大面积的低密度烧蚀防热材料之外,探测器的其它部位还需要一些更具承载能力的防热材料,为此,团队还研制了连续纤维增强中密度防热材料,既能满足结构要求,又具备轻质特点。该材料主要用作探测器大底及背罩防热结构的舱盖、封边环、埋件、螺塞等零部件,相比较低密度材料其强度更高,兼顾了耐烧蚀和承载能力。 而在受到热流相对较低的背罩结构上,团队采用的是超轻质的烧蚀防热涂层材料。该材料基本热物理性能达到国际先进水平,不仅隔热性能优良,也对着陆器的减重起到重要作用。同时,还充分考虑发射场的环境影响和真空总质量损失等要求,持续优化材料,使其耐盐雾、耐湿热性能均通过试验,真空总质量损失和可凝挥发份均满足设计要求。 超轻质防热涂层材料 三种材料协同作战 这三种材料在结构、配方及工艺设计时,还需要考虑的一个重要因素就是它们之间的结构热匹配性。探测器飞向火星的时间较长,由于轨道的变换和距离太阳的远近,防热材料在飞行过程中要承受极低的温度以及高低温度的循环交变,“冰火两重天”很容易导致材料发生开裂、脱落等灾难性问题。 在这样的恶劣条件下,三种防热材料和结构需要与着陆器的内部结构保持良好的结构热匹配性和完整性。团队通过工程计算、数值模拟及必要的地面试验等方法,设计模拟三种材料在极低温、高低温交变的空间环境下的结构变化及烧蚀匹配性,再根据实验结果进行优化设计,最终确保这三种材料的匹配性和完整性,使它们能够在茫茫太空中“协同作战”,为探测器安全抵达、顺利着陆保驾护航。
  • 《美国制造出一款可有效降低任意表面温度的涂料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-10
    • 希腊和其他阳光普照的国家的房屋经常被涂成白色,以反射尽可能多的阳光。如今,研究人员正在利用一种新的“被动辐射冷却”材料重新诠释这种古老的策略,以达到减少阳光和热量的目的。大多数的此类技术都无法利用现有的屋顶和墙壁,但是美国的一个研究团队现在已经制造出一种可以覆盖任何表面的冷却涂料,使温度降低约6摄氏度。新涂料可以直接涂覆在任意质地物体的表面,还可与不同颜料结合呈现不同色彩。 这一进展凸显了“该领域的巨大进步”,科罗拉多大学博尔德分校材料科学家Xiaobo Yin说。他的团队开发了一种被动的辐射冷却塑料薄膜,并成立了一家名为Radi-Cool的初创公司,旨在将其商业化。Yin说,这些新材料在某些气候条件下可能会使冷却成本降低15%。“这是一个很大的数字。”他说。在美国,有17%的住宅用电用于空调,因此节省的开支可能是巨大的。 白色涂料通常只反射大约80%的可见光,而且它们仍然吸收紫外线和近红外射线,这些射线能够使建筑物变热。为了做得更好,新材料首先要结合能够反射几乎所有太阳光线的材料或结构,包括近红外射线,在某些情况下,甚至包括紫外线。此外,它们还需含有聚合物或其他物质,以便利用它们的化学成分,将额外的热量以8到13微米的波长散发掉。大气不会阻挡这些波长的辐射,从而可以让材料在不加热周围空气的情况下将多余的热量有效地释放到空间中。 2014年,由加州帕洛阿尔托斯坦福大学的电气工程师Shanhui Fan领导的研究团队在《自然》杂志上报告说,通过一种含有二氧化硅和二氧化铪的交替层,他们制造出一个高度反射的表面,能够比周围的空气温度低5摄氏度。去年,Fan及其同事使用另一种材料——一种聚合物和银膜结合物——冷却用于空调的水。该团队表示,在夏季,这种技术有可能节省21%的空调使用成本。自那以后,Fan的团队成立了自己的初创公司SkyCool Systems。 Yin和他的同事Ronggui Yang去年又有了新的进展:一种里面嵌入了微小玻璃珠的塑料薄膜,能够使表面温度降低10摄氏度。而在澳大利亚,应用物理学家Angus Gentle和悉尼科技大学的Geoff Smith在2015年报告说,一种由两种聚合物制成的凉爽的屋顶材料,在正午和夜间分别能够使屋顶比周围的空气温度低3摄氏度和6摄氏度。 然而将这些涂层应用于屋顶和壁板材料仍然有一个问题。高度反光的化合物可以被整合到传统的木瓦和黏土瓦中,用于新的建筑物或翻新。但是对于现有的建筑物来说,要有更多的选择是比较困难的。 而这就是新的被动冷却涂料的用武之地。 哥伦比亚大学应用物理与应用数学系Yuan Yang和Nanfang Yu团队在新一期美国《科学》杂志上发表论文说,他们开发的新材料是一种多尺度微纳孔结构的“聚偏二氟乙烯-六氟丙烯共聚物”,用这种材料制成的薄膜在太阳光波段具有96%到99.6%的高反射率,在红外辐射窗口具有97%的高辐射率,在白天无需电能即可实现制冷。 测试结果显示,在光照充足的干燥环境中,薄膜表面温度可比环境温度低约5.9摄氏度;在潮湿环境中,薄膜温度可比环境温度低约2.9摄氏度。 据介绍,这种多孔薄膜中,聚偏二氟乙烯与空气折射率相差很大,可有效散射阳光,包括紫外光、可见光和近红外光,从而实现高反射率,不会被阳光加热;微米多孔结构提高了材料的辐射率,增加了向外的热辐射。 据了解,此前类似功能材料的制备多需要复杂的真空沉积设备,且难以直接覆盖在任意形状和质地的物体表面。新材料则具有成本较低、适用性强等优点,可直接涂覆在塑料、金属和木材等任意表面。 Yang表示,建筑物表面往往对颜色有所要求,这种材料可以和颜料结合在一起,呈现不同色彩的同时将阳光中的近红外光反射掉,和传统涂料相比,可显著降低建筑物的温度。 “它看起来很适合被广泛应用。”Gentle说。加州劳伦斯·伯克利国家实验室的一位屋顶冷却专家Ronnen Levinson说,新涂料的价格大约是传统涂料的5倍。但增加的成本带来了好处。Gentle说:“所有这些非常酷的涂层使得中午就像夜间一样凉爽。”