《高校“人工智能热”:人工智能应该怎么学?》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-05-31
  • 南京大学、吉林大学、天津大学等多所高校近日宣布成立人工智能学院,人工智能越来越多地进入高等教育。

    面对这一全新的专业,高校应如何开展专业建设、教师应怎样开展课程教学、学生又该做好哪些准备呢?

    一个月内,四所高校成立人工智能学院

    近年来,人工智能在全球范围内迅速崛起。2017年,国务院印发《新一代人工智能发展规划》,特别强调“把高端人才队伍建设作为人工智能发展的重中之重”“完善人工智能领域学科布局”“尽快在试点院校建立人工智能学院”等。

    目前,开设人工智能学院已成高校中的一股热潮,仅在今年5月,就有天津大学、南开大学、南京大学、吉林大学四所高校举行了人工智能学院的揭牌仪式。据不完全统计,此前已有中国科学院大学、西安电子科技大学、重庆邮电大学、湖南工业大学、长春理工大学等高校开设了人工智能学院或相关专业。

    “人工智能是一个比较接近应用层面的领域,我国在这方面拥有大量的数据,比如移动支付,每分钟产生大量的交易,如此体量的数据将帮助企业和科研工作者去解决问题。这是我国独有的科研驱动优势。”中国科学院计算技术研究所博士生导师、副研究员罗平说。

    据今年4月教育部印发的《高等学院人工智能创新行动计划》要求,到2030年,高校要成为建设世界主要人工智能创新中心的核心力量和引领新一代人工智能发展的人才高地,为我国跻身创新型国家前列提供科技支撑和人才保障。

    课程设置、教学模式等仍在探索之中

    “人工智能产业发展最大的瓶颈是人才,现在已经进入了全球争抢人工智能人才的时代。高水平人才培养的‘造血功能’将直接影响人工智能产业的核心竞争力,为产业集聚提供原动力。”南京大学人工智能学院院长、相关人才计划特聘教授周志华说。

    据《2017年中国人工智能产业专题研究报告》显示,随着科技、制造等业界巨头公司的布局深入,我国人工智能产业的规模将进一步扩大,将出现更多的产业级和消费级应用产品。未来,“人工智能+”有望成为新业态,而人才储备则将成为制约中国人工智能发展的重要因素。

    记者梳理了解,目前各高校开设的人工智能学院已基本覆盖了本科、硕士和博士等培养层次,通过多种手段,培养人工智能人才。

    ——高度重视理论研究。“要把握基础理论的主动权,不能仅仅关注于应用,核心算法、核心系统、核心硬件不能受制于人。” 罗平说,硬件、算法、系统没有捷径可走,西方不会直接把核心优势分享给世界,在当下环境中,人工智能领域的竞争大于合作,因此必须把硬件基础做好,把计算机科学底层的基础抓牢做好。

    ——不断开发升级课程体系。“人工智能是一门交叉学科,所以必须根据未来科技发展趋势设计课程体系。”长春博立电子科技有限公司董事长、复旦大学智能机器人研究院副院长张立华告诉记者。在复旦大学智能机器人研究院,教师团队在强调基础课程的同时,也会为高年级学生和研究生设置一些新的课程,让他们接触更前沿的技术,“许多新的技术课程都来自项目进展过程中发现的新的研发成果。”

    苏州大学计算机科学与技术学院院长李凡长介绍,基于人工智能跨学科的特点,在具体教学中,将根据需要不同学院开展联合教学,比如认知心理学和教育学院合作、人工智能硬件与电子学院等,让各个学院的师资力量交叉配合。

    ——建立校地企三方合作机制。校地企三方合作机制有助于打破现有高校人才培养模式中普遍存在的教学与实践相对脱节的现状,实现学校学习、专业实习与产业实践的深度对接,探索人工智能专业人才培养新模式。目前,南京大学将京东(南京)人工智能研究院作为学生实训基地,“京东在电商、物流、金融领域掌握着丰富精准的数据,与南京大学的合作可以推动人工智能技术为京东各个业务提供支撑,从而实现了产教的深度结合。”京东集团副总裁、AI平台与研究部负责人周伯文表示。此外,吉林大学人工智能学院和百度、滴滴等公司签署了合作备忘录。

    专家呼吁:冷静看待人工智能“热潮”

    人工智能具有技术属性和社会属性高度融合的特点,涉及数学、生物、计算机、脑科学、心理学等多个学科,目前虽然已成立了多所人工智能院校,但在课程设置、教学规划、师资准备等具体操作层面上,仍有不少难题有待解决。

    “目前,能专门用于人工智能的课程数量还远远不能满足需求,这导致人工智能专业课程只能浓缩到‘高级科普’程度。”周志华说,但一流的人工智能学院的教育目标应该是培养在该领域内具备源头创新能力和解决企业关键技术难题能力的人才,而不是仅仅停留在“科普”阶段,“因此,与其在现有学科培养体系框架下修修补补,不如根据人工智能学科自身的特点建设新的课程体系。”

    对于高等院校的“人工智能热”,不少业内人士呼吁社会各界应保持冷静。有专家表示,人工智能是热门行业,很多学校纷纷设立相应的学院和专业,但是不一定有实力做好。如果学院本身都没有足够积累,又怎么能培养出人工智能的高端人才呢?

    “师资是关键。”上海师范大学教授岳龙说,“开设人工智能专业对教师的知识结构也提出了新的挑战,因此组建专门的师资培训团队非常重要。”

    “新建学科或专业前应该有一套完整的标准,来评估高校是否具有足够的师资力量和研发条件,发展学科也应该循序渐进。”张立华说,“可以选择基础条件相对较好的学校设立试点,在摸索中推广。”

    .

相关报告
  • 《人工智能:投资热 落地难》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2018-06-29
    • 6月25日,在重庆2018高考志愿填报咨询大会上,人工智能、智能控制相关专业格外火爆,有特别多的考生和家长前来咨询。记者发现,教育部公布的“2017年度普通高等学校本科专业备案和审批结果”中,“机器人工程”“数据科学与大数据技术”等人工智能方向的专业屡次上榜。在新增备案本科专业名单中,有19所教育部直属高校申请开设“数据科学与大数据技术”专业,全国申请新设该专业的高校约有250所。 而与学生及家长们的热捧相反,在日前发布的《2018中国人工智能商业落地研究报告》称,过去一年,产业对人工智能期待值很高,各种应用层出不穷,但收获却很少。2017年中国AI创业公司获得的累计融资超过500亿元,但2017年中国AI商业落地100强创业公司累计产生的收入却不足100亿元,90%以上的AI企业亏损。 业界普遍认为,作为2017年全球信息通信领域最大热点的人工智能产业,雷声大、雨点小,遭遇商业落地之痛,确实令人深思。 AI机器人替代人工成为趋势 人工智能,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。2017年,从AlphaGo打败世界围棋冠军起,人工智能的产业热度再次被引爆。 随着人力成本的不断上升和先进制造需求的放大,全球工业机器人快速增长,增速达到每年17%,预计到2020年将达到400亿美元。工业机器人被用于自动化生产,包括装配、包装、焊接、产品检查和喷漆等环节。机器人可以确保更高质量的生产,减少人为错误和满足中小型企业日益增长的需求。因此,机器换人已经成为制造业发展的重要趋势。 中国信息通信研究院发布的《2017年中国人工智能产业数据报告》显示,人工智能是2017年全球信息通信领域的最大热点,远高于物联网、5G、安全与隐私、区块链等。 记者近日从“2018中国IT市场年会”上获悉,2017年中国人工智能核心产业规模超过700亿元,随着国家规划的出台,各地人工智能相关建设将逐步启动。预计到2020年,中国人工智能核心产业规模将超过1600亿元,增长率达到26.2%。 据工信部副部长辛国斌透露,2017年工信部共确定了202个智能制造综合标准化和新模式应用,97个智能制造试点示范项目,完成了25个智能制造标准立项。在示范项目的带领下,一大批企业积极推进智能化改造升级,服务型制造,共享经济等新模式日益普及,形成了许多新的增长点。 资本的热情与实际应用反差过大 此前已有报告显示,2018年会是人工智能行业的大洗牌期。根据腾讯研究院2017年发布的《2017中美人工智能创投现状与趋势》,截至2017年6月31日,全球AI公司总数达2542家,其中中国有592家。仅去年一年,全球已有超过50家AI创业公司宣布倒闭。 尽管如此,资本对AI产业的青睐不减。今年4月,人工智能平台公司商汤科技宣布完成6亿美元C轮融资,继去年旷视科技4.6亿美元融资以后,再次刷新了全球人工智能领域融资记录。而商汤科技刚于去年7月获得4.1亿美元B轮融资。云从科技也总计获得25亿元发展资金。 虽然融资额不断提高,但是国内人工智能的应用目前仍然处在初级阶段,商汤科技从事的机器视觉领域,不过是人脸识别这一块应用。安防领域,主要是海康威视和依图科技。云从科技主要瞄准的是传统银行。 家住重庆九龙坡的刘女士告诉记者:“家里去年买了一台‘智能冰箱’,广告号称可以实现食材管理、娱乐等功能,但其实只是比普通冰箱多了一个显示屏而已,所谓的食材管理功能都要自己逐个录入,使用起来并不方便。” 刘女士的吐槽并非个例。从市面上的产品可以看出,大多数被标为智能厨具的产品,不过是在传统厨具的基础上加入了手机客户端远程操控的功能,将以往厨具上的按键直接复制到手机上。从技术层面上看,这些智能厨具只是在原来基础上增加了无线网络、蓝牙等数据传输模块,外加一个配套的手机客户端,并没有真正的核心创新。“芯”片之痛依然。 中国智慧家庭研究中心主任梅晓春认为,人工智能应用于家电领域,还处于一个特别初级的阶段,甚至绝大多数家电人工智能产品,还仅仅是概念而已。 已有超过十年投资经验,在TMT领域的多个方向都有布局的联想之星合伙人刘维认为,互联网在进入一个阶段性的冬天,它的边际效应已经逐渐遇到了瓶颈。当各行各业可以很方便地应用互联网作为工具时,只喊着互联网,或者因为互联网而大肆烧钱,指望未来效率大量提升,就不容易成功了。 对于目前AI行业过度渲染,但实际上雷声大雨点小的现象,刘维的观点是:确实容易过度,因为AI看不见摸不着,拿一个评测,搞一个演示就可以说事,或者敢吹就能拿钱。“很多号称能解决的问题,都是长期看能解决,短期内做不到的,创业者选择什么路径,先去解决什么问题,我觉得非常关键。” 标准化和简单化是发展方向 “人工智能产业缺乏的不是算法,而是如何更好地转化成工程手段。”卡耐基梅隆大学机器学习系副主任、Petuum创始人兼CEO邢波说,人工智能太高深了,为人所知的有自动驾驶、医疗等应用场景,其实最普通的土木工程领域,也需要人工智能技术的变革,但是这些小的应用场景很少有人关注。 推动人工智能发展的目标只有一个,那就是AI与实体产业的融合,AI向传统经济的赋能,只有当人工智能内化为产业经济的核心能力,所做的一切才真正具有价值。邢波认为,人工智能产业的实验方法应该符合工业标准,可以被重复理解和使用,而不是把它当成艺术品一样观赏,更不能闭门造车。 业内人士认为,目前的智能家电不够智能,还是缺乏核“芯”技术,设计产品时并没有理解到消费者的真正痛点,设计理念过于理想化,炫技成分居多。结果就是,许多智能家电在很大程度上背离了消费需求。 在业内专家看来,人工智能未来面临的挑战主要有三个方面:首先是如何更好协同在一起,形成良好的AI发展生态。其次是建立统一标准,规范大家的行为。最终还是要行业应用,行业深度融合,这是人工智能的终极目标。 “未来人工智能行业要标准化和简单化,把一些标准制定出来,这个行业会形成更大的突破。”金山云高级副总裁、合伙人梁守星坦言,人工智能发展过程中的法律法规制定问题,也是行业面临的挑战。拿无人汽车来说,自动驾驶这个环节,已经涉及法律法规。一旦法律法规跟上了,人工智能的落地也会更加快速。
  • 《人工智能助力生物识别精准化》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-05-26
    • “你是谁?”在当今社会,无处不在的身份识别场景在无声发问。进小区门,要问你是业主本人吗?进家门,要扭动匹配的钥匙或按下指纹;开电脑工作,弹出密码输入弹窗。每个人都是独立的个体,我们能否使用唯一特性与外界建立联系?唯一意味着安全,也意味着核实更方便准确,就像我们的身份证,上面有唯一的数字编码。 与此同时,数字化时代,我们与机器的互动,从敲键盘一步跨向手指点击滑动、开口对话、抬起头、眨眨眼,远隔千里的人们能便捷地沟通交流、能跨省跨国网上办事,但客观上无法实现“亲眼所见”,也给建立“信任”关系带来新的挑战。 人工智能技术的发展,针对数字社会人与人之间、人与机器之间如何建立“信任”关系,提供了一个很好的技术解决手段,即生物识别技术。你用什么方式证明自己?怎样才能定义这世界独一无二的你?设备的进化中,谁在保证个人使用的安全性?无接触生活的背后都是技术在化解复杂,生物识别技术的研究,正是希望解决这些问题。 1.生物识别是数字社会的重要基础 无论处于哪个社会经济发展阶段,“人”始终是最重要的核心要素。人类作为群居动物,在地球上有人类的时刻,“信任”的需求就应运而生,通过视觉“亲眼所见”、听觉“亲耳所闻”等辨别同伴建立信任关系,这种最原始的通过“亲眼所见”等手段建立“信任”的方式也将伴随人类一直延续下去。 数字化世界,需要迭代新的信任交互,生物识别技术是技术发展演进到一定阶段的必然产物,也是一种新型数字身份的基础设施。它基于个体生物特征进行自动识别的一种技术,结合计算机与光学、声学、生物传感器和生物统计学原理等,依靠人体的生理特征或者行为特征来进行身份验证的识别,是当前人工智能技术和信息安全技术在工业界落地应用最显著的代表性成果之一。 所谓生物特征包括人脸、指纹、声纹、虹膜、指静脉、体温等,行为特征则记录签名笔迹、行走步态、坐姿等。这些生物特征各有特点,比如每个人的静脉血管都不是一样的,血管也足够多,因此它的信息唯一、丰富,几乎不能被复制;而一个人随着年龄增长和一些突发情况,行为特征比如走路姿态可能会发生变化,可以理解为特征信息稳定性不那么强。 唯一的、稳定的生物特征就具备理论上的安全基础,我们将它们进一步结合形成有效技术手段,同时采用多种方式来确保它准确、高效就像使用身份证确认“你就是你”。 作为一种身份认证方式,目前生物识别技术已经在金融、教育、司法、医疗、社会治理等行业都有了广泛应用,它需要满足不同场景、行业要求和不断变化演进的业务需求。它将迅速成为数字经济社会的重要信息基础设施之一。 2.生物识别开始出现大规模技术创新 从技术上来说,传统生物识别技术在鲁棒性、准确性以及抗攻击能力等方面,近年来都有大幅提升。比如突破2D人脸存在景深数据丢失的局限性,3D人脸识别技术因其具有更强的描述能力开始在高准确性应用中逐渐增多;在3D识别的基础上人脸活体检测的新技术也进一步被采用;防止人脸数据库被盗库的识别技术也已被提出;指纹识别则开始引入基于手指皮肤颜色和的脉搏心率信号的活体检验,用于防止被仿生导电材料做成的假手指攻击;声纹识别可结合使用电磁场检测,来判断声源为真人还是扬声器等。 另一方面,考虑到应用场景的不同需求:持续认证、移动设备上识别、个人隐私保护等,新型生物识别技术也是应需而生。比如,浙江大学网络空间安全团队针对持续认证,开发了“心脏密码”系统通过不间断用生物雷达的无线信号来感知心脏运动,实现了易用性高的非接触式可持续认证;针对移动设备上的生物识别,利用设备内置摄像头捕捉到的眼球运动,智能手环上测量到的心电图,以及虚拟现实头罩测量到的眼电图和脑电波都相应的实现了可靠的生物识别;针对生物识别中的个人隐私保护,采用无线信号成像来代替摄像头,既避免了摄像头受视角和阻挡等条件的限制,更消除了直接获取图像的隐私泄露风险。 另外,正如每种生物特征各有特点,在充分考虑各种攻击场景下,任何单一生物识别技术往往都呈现出特定的优势和局限。每个模态都具有不同的数据安全程度、采集适应场景、隐私敏感度等,因此解决方案并不能通过单一技术完全达成。 多模态多因子生物识别技术融合因此非常重要。比如夜晚光照不理想,人像识别率低,结合红外成像和热成像的跨模态互补就能增强人像识别的准确度。像是蚂蚁金服多模态融合人脸识别技术实现用户的精准识别,满足金融级误识率(低至千万分之一误识率)下,大大超出了单模态人脸识别技术能达到的性能瓶颈,并提升了人脸识别的安全性。同时,还充分利用移动设备的芯片级安全能力,经过与产业链多方的合作,构造了基于TEE(可信执行环境)的全链路安全协议,为生物支付提供了强有力的安全保障。此外,通过风险感知模块检测黑产攻击,风控引擎自动更新风险模型,风险拦截效率大幅提升,充分保证了交易安全。 未来生物识别技术的趋势便是如此,将会从传统的只提取人体生理特征,向人、物理世界、数字世界融合的认证方向发展。生物识别技术将在和环境特征、数字凭证相结合,满足时空关联、多模态多因子融合的基础上完全实现可信认证。 3.“生物识别”“多模态融合”作为主流研究方向形成标准化的应用共识 从实验室走向产业商用,从模型走向安全产品,靠的是持续生物识别技术迭代和多重技术算法的保障,尤其引起我们关注的是“安全和隐私保护”。 基于这一点,去年,浙江大学和蚂蚁金服联合成立了数据安全与隐私保护实验室,汇集了双方创新力量和优势资源,产学研联合推进前沿科技研究,提升国内生物识别行业安全技术水平。 目前针对人脸数据脱敏、不可逆、可更新、加密等做了大量研究,给生物识别信息保护提供可行的安全技术解决方案。部分安全技术已经转化应用到蚂蚁金服人脸识别技术上,支撑大量金融级安全应用。 在生物识别技术突破最多的是人脸识别,即在图像特征抽取和人脸比对环节中取得了很大进展。但从实验室之外的实际场景应用模拟发现,其影响因素很多。从全链路的角度来看,活体检测、人脸交互、关键点定位、人脸跟踪等在真实的场景下,特别是不同的手机、环境、用户背景等条件下,想做到非常好并且稳定的用户体验是很难的。我们对此进行了很多特殊的优化,如使算法在不同的手机上达到比较一致的运算速度、响应时间,通过文案设计提高用户对刷脸的感知和理解,适应用户背景(如光线、角度等),分析基于其他传感器数据的反馈等。同时企业根据自身业务的不断发展,向学术界持续反馈新的需求,也反过来促进了联合实验室在新技术前沿开拓的方向感和紧迫感,产学研联动形成良性闭环发展。 基于我们共同进行的大量研究、实践积累,近期企业已在IEEE成立“移动设备生物特征识别”标准工作组,并立项“生物特征识别多模态融合”IEEE国际标准。这也是中国企业首次在国际标准中,提出移动设备多模态融合技术的实现框架、功能要求、性能要求、安全要求等。这意味着,“生物识别”、“多模态融合”作为主流研究方向将形成标准化的应用共识。这也是一项技术脱离实验室踏上商用之路的重要一步,有利于推动行业平均技术发展水平。而国际标准是国际规则和共识重要通用载体,对整个行业良性发展至关重要,也是具备技术实力的中国企业必须具备发言权之处。毫无疑问,高校和企业在生物识别这类国际前沿技术及标准上的探索,是中国科技布局眼光、研究能力、科学严谨性的综合体现。它同样预示着,中国企业在人工智能技术领域的国际竞争进入新阶段——从产品出海到技术走出去,如今又向输出全球标准迈进。