《研究人员开发出一种快速3D打印技术可用于制造器官》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2021-03-16
  • 3D打印和医学的主要目标之一是能够3D打印人体器官进行移植。由于可用器官的数量太少,全世界需要器官移植的病人几乎都在移植名单上等待。来自布法罗大学的一组研究人员创造了一种新的高速3D打印技术,他们认为这种技术使医学离3D打印器官更近了一步。

    工程师们分享了一段他们的过程的短视频,它创造了一只3D打印的手。该视频时长7秒,据说是 "从19分钟加速而来"。虽然视频确实让人觉得打印过程只需要几秒钟,但实际上制作过程需要19分钟。不过,要知道,用其他系统3D打印如此详细的人体手部模型,最多需要6个小时。

    该项目的科学家表示,他们开发的技术比行业标准快10到50倍,而且可以完成大尺寸的样品。3D打印系统现在能够完成大尺寸物件操作,这在过去是很难实现的。该项目采用了一种名为立体光刻和水凝胶的3D打印技术。水凝胶是一种类似果冻的材料,用于制造各种各样的产品。

    布法罗大学的研究人员设计了一种快速打印厘米大小水凝胶模型的方法。该团队表示,他们的工艺显著减少了典型的3D打印过程中看到的因长期暴露在环境应力下而引起的零件变形和细胞损伤。这种新方法特别适合打印带有嵌入式血管网络的细胞,这对3D打印的人体组织和器官至关重要。

相关报告
  • 《克莱姆森大学开发出用于储能的陶瓷激光3D打印技术》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-12-05
    • 克莱姆森大学的研究人员正在研究一种新的3D打印技术,该技术涉及快速激光加工,以创建“质子陶瓷电解槽堆叠”,将电能转化为氢气,作为储存能量的一种方式。 电解槽可用作汽车中的燃料源或存储太阳能和风能产生的能量。新的激光3D打印技术将减少制造高度压缩电解槽的成本和时间。建华“Joshua”Tong,材料科学与工程副教授,以160万美元从美国能源部能源效率和可再生能源办公室领导该项研究。这项新技术不仅可以将制氢成本降低一半,而且还可以将器件尺寸减小一个数量级。 在Tong的项目中,最大的挑战之一是弄清楚如何经济高效地用陶瓷进行印刷。当常规制造时,陶瓷必须在高温炉中烧结,通常持续数小时。另外,不同类型的陶瓷需要在不同温度下烧结。 此外,电解槽需要四种不同类型的陶瓷,这使得烧结成为挑战。然而,研究人员开发出一种3D打印机,可以放下一层陶瓷,同时激光烧结它,无需使用熔炉。该技术将允许用户在不使用炉子的情况下3D打印由四种不同类型的陶瓷制成的电解器。它类似于制作具有许多层的蛋糕并且每层具有不同的风味。 该技术可应用于3D打印其他类型的陶瓷产品,包括电池和太阳能电池,或高密度电池,允许智能手机一次保持充电几天。此外,该技术可以打开3D打印到新产品和随之而来的所有优势。 该部门主席Rajendra Bordia表示,该研究增强了克莱姆森帮助创造更可持续的能源转换方式的努力。
  • 《科学家开发出一种方法可在低温度下制造3D打印纳米级玻璃结构》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-06-08
    • 来自卡尔斯鲁厄理工学院、加州大学欧文分校和爱德华兹生命科学公司的材料科学家已经开发出一种方法,可以在比以前的方法低得多的温度下 3D 打印纳米级玻璃结构。 在他们发表在《科学》杂志上的研究中,Jens Bauer、Cameron Crook 和 Tommaso Baldacchini 使用他们的技术打印了各种纳米结构。帕多瓦大学的 Paolo Colombo 和 Giorgia Franchin 在同一期期刊上发表了一篇 Perspective 文章,概述了用于打印纳米级玻璃和陶瓷的方法以及团队在这项新工作中所做的工作。 近年来,3D打印已应用于各种应用,产生了令人印象深刻的艺术作品、更便宜的产品和高度详细的物理模型。引起人们兴趣的一个应用是纳米级的 3D 打印物体——此类物体可用于制造微型电子设备,尤其是那些使用光的部件。到目前为止,大多数此类应用仅限于生产由聚合物制成的物体,因为基础材料可以很容易地熔化,然后通过冷却硬化。 但是聚合物不能提供基于光的纳米光子学所需的分辨率。不幸的是,由于烧结(熔化形成固体)需要极高的温度,因此打印 3D 玻璃结构的尝试只取得了部分成功。在这项新的努力中,研究团队找到了一种在几乎是传统方法一半的温度下打印纳米级结构的方法。 与其他方法不同,研究人员没有使用悬浮的二氧化硅纳米粒子,而是围绕多面体低聚倍半硅氧烷分子创建了液态树脂笼状结构。然后该团队使用树脂作为墨水来 3D 打印物体,然后将它们加热到 650°C(其他方法需要加热到 1100°C)。加热去除了有机成分并将笼子锻造成连续的玻璃材料。 该团队通过 3D 打印微透镜和其他微小物体测试了他们的方法,并建议将其用于光学级熔融石英的片上打印。