《锰元素掺杂NASICON型正极材料增强钠离子电池能量密度》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2019-01-03
  • 钠离子快离子导体(NASICON)型正极材料因其具有三维钠离子快速传输网络、长循环稳定性以及高钠离子迁移率优点,而备受研究人员关注。然而,该类型电极由于其固有的热力学性质决定充放电过程中每单位电极结构中只有两单位的钠离子(Na+)能够实现可逆脱嵌,这大大限制了其能量密度。法国亚眠大学的Christian Masquelier教授带领的研究团队利用元素的替代掺杂的方法用锰离子(Mn2+)取代NASICON型正极材料磷酸钒钠(NaV2(PO4)3)中一个V3+离子的位置,显著提升了电极充放电过程中可逆的离子脱嵌数量,从而提高了电池的能量密度。研究人员通过溶胶凝胶法,将Mn2+引入到NaV2(PO4)3前驱体溶液中,随后通过800℃水热反应获得结晶产物。X射线衍射表征显示,产物为纯相的Na4MnV(PO4)3,即Mn2+确实掺入到NaV2(PO4)3晶体晶格当中取代了其中一个 V3+的位置。随后以Na4MnV (PO4)3为正极组装成完整的钠离子电池,并在不同的电压工作区间进行了一系列的电化学性能测试。首先考察了在2.5-3.7 V电压范围内(对应着V3+/V4+与Mn2+/Mn3+氧化还原电对的价态变化)电池性能与电极材料结构行为关系,发现在这一电压区间,采用新型的Na4MnV (PO4)3为正极电池与传统的NaV2(PO4)3正极电池一样呈现出典型的可逆两相反应(两个Na+脱嵌),且两者的电池性能相当,前者放电比容量为101 mAh g−1,后者为103 mAh g−1。然而,当拓宽工作电压区间后(2.5-4.3 V,充电过程对应着V3+/V4+、Mn2+/Mn3+及V4+/V5+氧化还原电对的价态变化),采用新型的Na4MnV (PO4)3为正极的电池就显现出不同于两相的可逆性单相反应(实现了三个单元的Na+脱嵌),放电比容量进一步提升到了 156 mAh g−1,库伦效率可达80%以上。研究人员指出,电池性能提升主要是Mn2+的取代激活了高电压处V4+/V5+氧化还原电对,从而实现了比容量提升。该项研究利用锰离子(Mn2+)部分取代掺杂修饰NASICON型正极材料NaV2(PO4)3,从而实现了每单位电极结构中三个单位的钠离子(Na+)的可逆脱嵌,从而增强了能量密度。为设计和开发高性能的钠离子电池开辟了新路径。相关研究工作发表在《Small Methods》。

相关报告
  • 《铵钒化合物负极显著增强钾离子电池性能》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-01-04
    • 相比锂元素,钾元素具备资源丰富、成本低廉、工作电压高等优点,因此钾离子电池在大规模电化学储能领域中具备广阔的应用前景。然而,钾离子半径大于锂,使得其在电极材料中的嵌入和脱嵌变得困难,从而导致电池性能较低。德国伊尔梅瑙工业大学的Yong Lei教授带领的研究团队研发了一种铵钒层状化合物(NH4V4O10, NVO)并首次作为负极应用于钾离子电池,其具备了大的晶格间距和良好的两维离子传输通道,显著改善了钾离子(K+)嵌入和脱嵌动力学,从而显著增强电池性能。为了改善电极离子传输特性,必须开发出大晶格间距且具备离子传输通道的电极材料。为此研究人员利用水热法制备了NVO化合物,扫描电镜测试结果显示该化合物呈现出分层级的花状形貌,其组成单元是一维纳米线,意味着该花状化合物具备了离子快速传输通道。而透射电镜表征显示,NVO化合物(001)晶面间距达到了9.8 Å,大于了K+离子的直径,即可以有效地实现K+嵌入和脱嵌(保障K+的快速扩散),具备了更加优异的可逆的钾离子存储性能,有助于电池性能提升。随后将制备的NVO化合物作为负极用于钾离子电池并在三个不同的电压区间进行了电化学性能测试。在2-4.2 V电压窗口区间,电池的初始放电比容量高达 210 mAh g−1,但是经过10次循环后比容量便大幅衰减至114 mAh g−1;而在1-3.8 V和2-3.8V电压区间,电池初始放电比容量低于前者,依次为106 mAh g−1和86 mAh g−1,但循环稳定性更好,10次循环后放电比容量基本没有衰减。通过电化学阻抗谱测试可知,电池在2-4.2 V电压窗口时串联电阻最大为4728 Ω,远大于在1-3.8 V和2-3.8V两个电压窗口区间电池的串联电阻(分别为2898 Ω和1295 Ω),意味着在后面两个电压区间工作电池的离子传输更为高效。进一步对电池进行循环稳定性测试,在1-3.8V电压区间、50 mA g−1放电电流密度下循环200次,电池获得了116 mAh g−1放电比容量,容量保持率为96%,单圈循环的容量衰减率仅为0.02%;而在2-3.8V电压区间循环时,循环200次后获得75 mAh g−1放电比容量,容量保持率93%,单圈循环的容量衰减率仅为0.03%;上述两者放电性能和容量保持率都高于先前已报道的性能最优的钒氧化物负极的钾离子电池(容量不超过70 mAh g−1,容量保持率均小于80%)。更为关键的是,当将放电电流提升60倍至3 A g−1时,电池在1/2-3.8 V区间依旧可以获得较高的放电比容量,分别为51 mAh g−1和 47 mAh g−1,展现出了优秀的高倍率性能。电化学机理研究表明,NVO在高电位时没有脱铵反应是保持其结构稳定性的重要因素,从而达到电池性能的循环稳定性。该项研究制备新型的层状结构钒铵化合物花状负极材料,具备了宽泛的晶面间距为钾离子提供了快速传输通道,增强了储钾性能,从而增强了电池性能和循环寿命。为设计和开发高性能的钾离子电池提供了新的路径。相关研究工作发表在《Small Methods》。
  • 《高浓度锌离子水系电解质增强锌离子电池循环寿命》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:wukan
    • 发布时间:2018-06-01
    • 金属锌(Zn)凭借其较高的理论比容量、储量丰富、成本低廉和环境友好等诸多优点,被视为水系电池理想的负极材料之一。然而,金属Zn易于在碱性溶液中发生化学反应导致库伦效率下降、枝晶生长以及水消耗等问题,导致电池循环寿命大幅减短。马里兰大学Chunsheng Wang教授课题组牵头设计制备了全新的超高浓度的Zn离子水系电解质,应用于Zn离子电池,有效地抑制了枝晶的形成,从而显著地增强电池性能和循环寿命。研究人员将1摩尔的双三氟甲烷磺酰亚锌(Zn(TFSI)2)、20摩尔双三氟甲烷磺酰亚胺锂 (LiTFSI)和水溶剂混合配置成pH为中性的高浓度Zn离子电解质,随后与Zn负极组成半电池进行恒电流循环测试。结果显示,基于中性高浓度锌离子电解质的半电池循环次数可达500余次,即循环寿命长达170小时;相反,采用传统碱性电解质循环寿命大幅缩减至5小时。扫描电镜表征显示,采用中性高浓度锌离子电解质电池Zn电极表面循环反应前后均呈现光滑的表面,即没有枝晶形成,而采用碱性电解质的电池Zn电极则出现明显的“树突”状枝晶。随后研究人员将制备的中性高浓度锌离子电解质、锂锰氧(LiMn2O4)正极、Zn负极组装成完整的纽扣电池,并测试了电池的电化学性能。在0.4C倍率下,电池能量密度可达180 Wh kg–1,经过4000次循环后,电池仍可保持85%的初始容量,库伦效率近100%;而将该电解质应用于以氧气为正极的的Zn空气电池中同样获得了优异的性能,即电池能量密度可达300 Wh kg–1,循环次数达200余次。上述结果表明,新型的高浓度中性Zn离子电解质能够有效地抑制充放电循环中枝晶的形成,从而显著改善电池循环稳定性和寿命。而结构表征、谱学研究以及分子动力学综合研究揭露了该电池性能增强原因来源于高浓度水系电解质中Zn2+的溶剂化-保护层结构,即Zn2+周围被大量双三氟甲烷磺酰亚胺阴离子迫包围,避免其与水分子接触从而形成离子对(Zn-TFSI)+,有效抑制(Zn-(H2O)6)2+的形成,进而避免化学惰性的氧化锌枝晶的形成。该项研究设计制备了新型的高浓度水系锌离子电解质,有效地抑制了锂枝晶的形成,增强了电池性能和循环寿命。为设计和开发高性能的可逆锌金属电池开辟了全新的道路,并为其他类型的不可逆电池提供了借鉴。相关研究工作发表在《Nature Materials》 。