《微生物所在肠道解木糖拟杆菌抗脂肪肝机制上获新进展》

  • 来源专题:生物科技领域知识集成服务
  • 编译者: 陈方
  • 发布时间:2020-09-10
  • 肠道微生物组是人体“第二基因组”,其编码的基因及产物在人体生长、发育,免疫、代谢稳态维持过程中发挥重要作用。中国科学院微生物研究所研究人员提出挖掘关键、核心肠道微生物的新策略。采用益生元、难吸收药物等外源分子(Outside disturbance factors)干预机体,扰动肠道菌群结构和组成,寻找丰度显著变化OTU,将其定义为内在效应菌(Inside effectors),进一步阐明效应菌功能和机制。
    研究团队利用fa/fa大鼠作为脂肪肝动物模型,研究了口服难吸收灵芝杂萜抗非酒精性脂肪肝作用。灵芝杂萜抑制肝脏脂肪从头合成、促进脂肪酸氧化和低密度脂蛋白运输,抗脂肪肝作用明显。16S测序表明化合物显著富集了具有产叶酸能力的拟杆菌(Bacteroides. spp)和产丁酸的Kineothrix alysoides;KEGG分析显示叶酸(维生素B9)合成及其调控的一碳代谢通路显著增强。通过对B. thetaiotaomicron,B. acidifaciens, B. dorei和B. uniformi基因组分析发现这四种显著富集的拟杆菌含有完整的叶酸合成途径,但缺失叶酸合成前体pABA的aroD基因。体外添加pABA证实它们可以高效合成叶酸。肠道菌群来源叶酸先前已经被证实是低碳饮食改善脂肪肝的重要机制,但参与叶酸-肝脏通路调节的肠道微生物还缺乏研究。选取化合物干预后增加最显著的解木糖拟杆菌(B. xylanisolvens)深入研究,口服解木糖拟杆菌BX显著增加肝脏、血液中叶酸含量,提高叶酸调控的一碳代谢,显示良好的降脂、降糖、抗脂肪肝作用。敲除叶酸生物合成途径folP基因,获得叶酸合成缺陷株BXΔfolP。体内小鼠实验显示BXΔfolP无抗脂肪肝作用。该研究首次证明了肠道拟杆菌-叶酸-肝脏途径在治疗脂肪肝等代谢疾病方面的巨大潜力。研究组利用人体肠道来源的解木糖拟杆菌研制了酸奶产品。相关研究成果于2020年8月11日发表于Cell Reports。
    陈方 摘编自http://www.im.cas.cn/xwzx2018/kyjz/202008/t20200812_5653048.html
    原文标题:刘宏伟团队、刘双江团队合作Cell Reports发表肠道解木糖拟杆菌抗脂肪肝机制

相关报告
  • 《刘宏伟团队、刘双江团队合作Cell Reports发表肠道解木糖拟杆菌抗脂肪肝机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-08-12
    • 肠道微生物组是人体“第二基因组”,其编码的基因及产物在人体生长、发育,免疫、代谢稳态维持过程中发挥重要作用。肠道微生物数量巨大,物种多样性丰富,包括有益菌和有害菌。如何快速准确的找到肠道菌群中参与人体调节的关键“先生”并阐明其作用机制,是肠道微生物组研究的前沿科学问题。中国科学院微生物研究所刘宏伟研究员团队与刘双江研究员团队紧密合作,提出挖掘关键、核心肠道微生物的新策略。采用益生元、难吸收药物等外源分子(Outside disturbance factors)干预机体,扰动肠道菌群结构和组成,寻找丰度显著变化OTU,将其定义为内在效应菌(Inside effectors),进一步阐明效应菌功能和机制。 前期研究中发现灵芝来源的小分子通过靶向调节肠道菌群的组成、结构,重建健康肠道菌群,发挥减肥、降糖、降脂作用(J. Med. Chem., 2018)。通过培养组比较给药前后小鼠肠道微生物组变化,获得一株给药后显著增加的肠道狄氏副拟杆菌(Nat. Commun. 2020)。口服狄氏副拟杆菌显示良好的减肥、降糖、降脂作用。作用机制研究表明:该菌将初级胆酸转化为熊去氧胆酸、石胆酸等次级胆酸,激活次级胆酸介导的肠肝轴途径,发挥降脂作用;通过合成琥珀酸促进肠道糖新生途径,激活肠脑轴通路,发挥减肥和降糖作用。  团队利用fa/fa大鼠作为脂肪肝动物模型,研究了口服难吸收灵芝杂萜抗非酒精性脂肪肝作用。灵芝杂萜抑制肝脏脂肪从头合成、促进脂肪酸氧化和低密度脂蛋白运输,抗脂肪肝作用明显。16S测序表明化合物显著富集了具有产叶酸能力的拟杆菌(Bacteroides. spp)和产丁酸的Kineothrix alysoides;KEGG分析显示叶酸(维生素B9)合成及其调控的一碳代谢通路显著增强。通过对B. thetaiotaomicron, B. acidifaciens, B. dorei, and B. uniformi基因组分析发现这四种显著富集的拟杆菌含有完整的叶酸合成途径,但缺失叶酸合成前体pABA的aroD基因。体外添加pABA证实它们可以高效合成叶酸。肠道菌群来源叶酸已经被证实是低碳饮食改善脂肪肝的重要机制(Cell Metab., 2018, 559),但参与叶酸-肝脏通路调节的肠道微生物还缺乏研究。选取化合物干预后增加最显著的解木糖拟杆菌(B. xylanisolvens)深入研究,口服解木糖拟杆菌BX显著增加肝脏、血液中叶酸含量,提高叶酸调控的一碳代谢,显示良好的降脂、降糖、抗脂肪肝作用。敲除叶酸生物合成途径folP基因,获得叶酸合成缺陷株BXΔfolP。体内小鼠实验显示BXΔfolP无抗脂肪肝作用。该研究首次证明了肠道拟杆菌-叶酸-肝脏途径在治疗脂肪肝等代谢疾病方面的巨大潜力。研究组利用人体肠道来源的解木糖拟杆菌研制了酸奶产品。 以上研究成果以“Activation of a specific gut Bacteroides-folate-liver axis benefits for the alleviation of nonalcoholic fatty liver disease”为题在线发表在国际著名学术刊物Cell Reports上。微生物所刘宏伟研究员课题组乔姗姗、宝丽副研究员、汪锴博士为该论文的共同第一作者,刘宏伟研究员、刘双江研究员为论文共同通讯作者。该工作得到了陈义华研究员团队、微生物资源与大数据中心的支持和帮助。https://doi.org/10.1016/j.celrep.2020.108005      刘宏伟研究员、刘双江研究员团队在微生物组研究方面取得了系列研究成果,发表研究论文4篇,包含ESI高被引论文一篇;申请中国发明专利两项,充分体现了中国科学院微生物研究所学科综合优势。感谢中国科学院战略生物资源服务网络计划评价转化平台项目(ZSTH-016)、中国科学院重点部署项目“人体与环境健康的微生物组共性技术研究”(KFZD-SW-219)、中国科学院B类先导项目“肠道微生物分析技术与标准化系统研究”(XDB38020300)、国家自然科学基金(81773614)和中国科学院青年创新促进会项目 (2014074)等的资助。 发表研究论文:   1.Shanshan Qiao, Li Bao, Kai Wang, Shanshan Sun, Mingfang Liao, Chang Liu, Nan Zhou, Ke Ma, Yuwei Zhang, Yihua Chen, Shuang-Jiang Liu*, Hongwei Liu.* Activation of a specific gut Bacteroides-folate-liver axis benefits for the alleviation of nonalcoholic hepatic steatosis. Cell Reports, 2020, accepted.   2.Chang Liu, Nan Zhou, Mengxuan Du, Yutong Sun, Kai Wang, Yujing Wang, Danhua Li, Haiying Yu, Yuqin Song, Bingbing Bai, Yuhua Xin, Linhuan Wu, Chengying Jiang, Jie Feng, Hua Xiang, Yuguang Zhou, Juncai Ma, Jun Wang, Hongwei Liu,* Shuangjiang Liu.* Mouse gut microbial biobank (mGMB) reveals diverse novel culture bacteria. Nature Communication, 2020, doi.org/10.1038/s41467-019-13836-5.   3.Kai Wang, Mingfang Liao, Nan Zhou, Li Bao, Ke Ma, Zhongyong Zheng, Yujing Wang, Chang Liu, Wenzhao Wang, Jun Wang, Shuangjiang Liu*, Hongwei Liu* . Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Reports, 2019, 26, 222-235 (ESI高被引论文). 4.Kai Wang#, Li Bao#, Nan Zhou, Jinjin Zhang, Mingfang Liao, Zhongyong Zheng, Yuting Zhang, Chang Liu, Jun Wang, Lifeng Wang, Wenzhao Wang, Shuangjiang Liu, Hongwei Liu*.Structural modification of natural product ganomycin I leading to discovery of a a-glucosidase and HMG-CoA reductase dual inhibitor improving obesity and metabolit dysfunction in vivo. Journal of Medicinal Chemistry, 2018, 61, 3609-3625.
  • 《微生物研究所在AI赋能挖掘微生物组功能多肽方面获得新进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-03-08
    • 抗生素耐药是现代医学面临的严峻挑战之一,在近几十年来,产生抗生素耐药性的病原微生物持续增加,每年在全球范围内耐药菌引发感染造成的死亡人数达到70万人。抗菌肽(AMPs)作为解决抗生素耐药性的候选方案之一,具有不易产生抗药性、作用快速等优势,同时因为容易降解也不会对环境造成持续性污染。因此,开发出能够应对抗多重耐药菌的新药物,缓解耐药问题迫在眉睫;但传统方法筛选新药的候选分子成功率较低,亟需高通量的挖掘和筛选手段。       抗菌肽是一类具有抗微生物活性的小肽,其作用范围包括细菌、真菌、病毒和寄生虫。抗菌肽可以通过多种作用机制达到抑制病原微生物的效果,其中较为普遍的作用机制是结合病原微生物的细胞膜,扰乱细胞膜结构;或直接在细胞膜上形成微孔使细胞内容物外流,最终将病原微生物杀死。近些年来,能抵御多重耐药菌同时不易产生耐药性的抗菌肽,已被认为是替代传统抗生素的下一代抗菌剂,如果能在大量的微生物和微生物组中高效、高通量挖掘,将非常有益于临床应对耐药菌的治疗。       2022年3月3日,中国科学院微生物研究所在国际重要期刊《自然-生物技术》(Nature Biotechnology)上发表了题为“Identification of antimicrobial peptides from the human gut microbiome using deep learning”的研究性文章。该文章采用自然语言学习(NLP)的多种神经网络方法,实现了抗菌肽挖掘模型的构建和优化;通过该预测模型在大规模微生物组(1万余样本)中的应用,总计挖掘并合成了216种潜在的新型抗菌肽。经实验验证,其中181种新型抗菌肽具有抗菌活性(占83.8%)。进一步的实验表明抗菌肽对多重耐药革兰氏阴性菌具有较强的抑菌能力,同时在动物感染模型中验证部分抗菌肽具有非常好的体内活性和安全性(图1)。  该研究结合了微生物组大数据和最新的深度学习模型,提供了人工智能赋能大分子挖掘和转化的良好范例;同时,也表明微生物组数据中存在着大量待开发资源,通过计算方法可以将具有生物活性的分子快速高通量的发掘出来。其次,该研究还扩大了人工智能在生物医学领域的应用范围,先前研究中主要集中在医学图像处理、小分子药物筛选等领域,增加了人工智能的应用场景。考虑到未来随着测序数据的累积,更多的微生物大数据将被获得。同时,不论是小分子药物还是肽的搜索空间仍处于早期探索阶段,对于挖掘多功能分子(治疗感染、代谢和免疫疾病),具有非常大的发展潜力。       中国科学院微生物研究所王军课题组马越,夏彬彬,陈义华课题组郭正彦,张雨薇为本文的共同第一作者。王军研究员和陈义华研究员为共同通讯作者。本研究受到了中国科学院战略先导项目“病原体宿主适应与免疫干预”、科技部重点研发、国家自然科学基金委相关人才计划项目(陈义华)、面上项目和“糖脂代谢的时空网络调控”重大研究计划培育项目,以及北京市科技新星项目的支持。       论文链接:https://www.nature.com/articles/s41587-022-01226-0