《磷脂酰肌醇甘露糖苷酰基转移酶PatA是结核分枝杆菌体内和体外生长所必不可少的》

  • 来源专题:结核病防治
  • 编译者: 蒋君
  • 发布时间:2021-04-08
  • 结核分枝杆菌由一种不寻常的细胞膜组成,它由独特的脂类和聚糖控制,对亲水性药物具有渗透性屏障,是其生存和毒性的关键。磷脂酰肌醇甘露糖苷(PIMs)是一种糖脂,不仅是细胞膜的关键结构成分,而且是脂甘露聚糖(LM)和脂阿拉伯甘露聚糖(LAM)的前体糖脂,是与宿主-病原体相互作用有关的重要脂聚糖。研究人员重点研究PatA,一种膜相关酰基转移酶,它将棕榈酰基部分从棕榈酰辅酶A转移到甘露糖环的6位,该位置与PIM1/PIM2中肌醇的2位相连。研究人员验证了PatA在体内和体外对结核分枝杆菌的作用,构建了一个patA条件突变株,并证明patA在批培养中具有杀菌作用。这种表型与分枝杆菌内膜的重要结构成分Ac1PIM2水平显著降低有关。在巨噬细胞感染和小鼠感染模型中也证实了PatA对生存能力的要求,其中在PatA基因沉默后观察到存活细胞数显著减少。这让人想起PimA的行为,它是启动PIM途径的甘露糖基转移酶,也被发现是结核分枝杆菌在体内和体外生长所必需的。总之,实验数据强调了PIM生物合成途径的早期步骤对结核分枝杆菌生理学的重要性,并揭示了PatA是针对这一主要人类病原体的药物发现计划的新靶点。

    结核病(TB)是单一传染源导致死亡的主要原因。结核分枝杆菌菌株中耐药性的出现,强调需要确定新的靶点和抗菌药物。分枝杆菌的细胞膜是导致这种耐药性的主要因素。研究人员重点研究了PIMs的生物合成、关键毒力因子和细胞膜的重要组成部分。具体来说,研究人员已经确定PatA,在结核分枝杆菌中是必需的。这些结果强调了PIM生物合成途径早期步骤对分枝杆菌生理学的重要性以及PatA作为潜在新药靶点的适用性。

相关报告
  • 《 徐华强课题组与合作团队首次解析de novo DNA甲基转移酶和天然底物核小体的高分辨率结构》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-09-25
    • 中科院上海药物研究所徐华强课题组与美国温安洛研究所Peter Jones课题组、Karsten Melcher课题组于北京时间2020年9月23日在国际顶级期刊《NATURE》在线发表了题为“Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B”的重要研究成果。研究团队利用Cryo-EM技术首次解析了de novo DNA甲基转移酶(DNMT3A2/DNMT3B3)和天然底物核小体的高分辨率结构,阐述了DNMT3A2/DNMT3B3与核小体的结合模式,提出了全基因组DNA甲基化的模型。   DNA甲基化可以改变染色质结构、DNA稳定性及DNA与蛋白质等相互作用,从而控制基因表达。DNA甲基化可随DNA的复制过程遗传给新生的子代DNA,是一种重要的表观遗传机制。在染色质环境中,DNA的甲基化要比在溶液中复杂得多,核小体作为遗传物质的组成单位,包裹在其外围的DNA更加难以被甲基化。然而,大多数核小体结合的de novo DNA甲基转移酶处于非激活状态。de novo DNA 甲基化转移酶3A和3B催化的CpG甲基化对哺乳动物的发育和细胞分化至关重要,并且常常与癌症的发生密切相关。通过对大量正常组织(GTEx数据库)和癌症组织(TCGA数据库)中不同亚型DNMT的表达分析,本研究以人类癌症中主要的两种DNMT亚型DNMT3A2和DNMT3B3与核小体核的相互作用为重点。目前,DNMT3A催化结构域和DNMT3L类催化结构域以及其与游离DNA的晶体结构已经解析,然而由于其局限性, DNMT与其天然底物核小体的相互作用机制并未得到阐述。   中科院上海药物研究所徐华强课题组联合美国温安洛研究所Peter Jones课题组、Karsten Melcher课题组,长期致力于研究DNA 甲基化对基因表达调控的重要影响及其对人类癌症发生发展的广泛参与。为了揭示DNMT3A2/3B3与核小体的相互作用并了解染色体上DNA甲基化,通过四年多的不懈努力,团队利用冷冻电镜技术成功解析DNMT3A2/3B3和核小体复合物近原子分辨率的冷冻电镜结构。该结构显示,异源四聚体复合物(3B3-3A2-3A2-3B3)与分离的DNMT3A催化结构域和DNMT3L类催化结构域复合物非常相似,但是却非对称地和核小体相互作用。DNMT3B3类催化结构域之一锚定在核小体的酸性补丁(acidic patch)区域,其作用核心区域为DNMT3B3 740位和743位的精氨酸指(Arginine finger)。核小体酸性补丁区域与多种核小体结合蛋白都有至关重要的相互作用。然而,DNMT3A2催化结构域并不与核小体核心区域相互作用,而是随着DNA的路径,与一端的连接DNA(linker DNA)相互作用并催化其CpG甲基化。尽管DNMT3家族蛋白具有高度的保守性,通过DNA结合的DNMT3A2和核小体核心区域结合的DNMT3B3的结构对比,揭示了目标识别区域(TRD)结构域的开关功能。在所有具有催化活性的DNMT3亚型中,都含有对目标DNA作用至关重要的TRD结构域,虽然其在空间上阻断了催化结构域与核小体核心区域相互作用,但是增强了DNA的结合能力。 为了验证酸性补丁相互作用对核小体募集的重要性,研究团队对精氨酸指(R740和R743)进行了突变分析,并以远离酸性补丁区域的氨基酸(K745和R749)作为对照。体外相互作用实验(ALPHA Screen)显示,相互作用核心区域740和743精氨酸指相反电荷的突变显著减弱了DNMT3A2/3B3与核小体的相互作用,而非核心区域或者相同电荷的突变则如预期,结合能力没有显著变化。细胞内染色质结合能力实验(chromatin association assay)也证实与酸性补丁相互作用740和743精氨酸指的突变导致与染色质的结合显着降低。DNA甲基化阵列(Infinium MethylationEPIC BeadChip)同样证实了DNMT3B3与核小体酸性补丁之间的相互作用对于体内DNA甲基化重建的重要性。突变体DNMT3B3恢复DNA甲基化的能力和其与染色质的结合能力密切相关。作为对照的K745和R749突变,甲基化恢复水平几乎与野生型DNMT3B3一样。相反,显着降低与染色质结合的R740E和R743E突变,甲基化恢复效率低得多。有限的微球菌核酸酶消化实验(MNase digestion)进一步证实了存在DNMT复合物的情况下,核小体的任一侧都显着增加了约10 碱基对的保护区域。这些数据强烈支持DNMT复合物的类催化结构域与酸性补丁相互作用对于核小体募集和DNA甲基化的重要性,并且与DNA的结合并不依赖于酶的活性位点CpG。 总之,DNMT3A2/3B3与核小体复合物的结构以及功能分析揭示了DNMT3B3类催化结构域出乎意料的核小体靶向功能,将DNMT3A2/3B3催化结构域定位在核小体连接DNA区域,这对于全基因组DNA甲基化非常重要。通过DNMT类催化结构域和催化结构域将DNMT核心核小体靶向和CpG甲基化分离,可以将DNMT3复合物募集到难以接近的核小体附近,同时将CpG甲基化靶向连接DNA区域。这表明,在体内将DNA甲基化传播至核小体DNA需要核小体核的重塑,例如通过DNA复制、转录或其他核小体重塑事件。   该项工作由2016年作为药物所和温安洛的交流生徐廷海(药物所2017届博士毕业生,目前为美国温安洛研究所Peter Jones组、Karsten Melcher组共同博士后)在药物所导师徐华强和温安洛Peter Jones、Karsten Melcher的指导下开展,徐廷海为本文的唯一第一作者。参与此项工作的还有温安洛研究所Minmin Liu博士,X. Edward Zhou博士,Gongpu Zhao博士以及南加州大学的Gangning Liang教授。中国科学院上海药物所徐华强与美国温安洛研究所Peter Jones,Karsten Melcher为本文的共同通讯作者。
  • 《微生物所刘翠华课题组在结核分枝杆菌入侵机制方面取得新进》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-03-08
    • 结核病(TB)是由结核分枝杆菌(M. tuberculosis, Mtb)引起的一种古老的慢性传染病,至今仍是全球死亡人数最多的单一传染病。目前全球每年新出现的肺结核患者约800-1000万,每年因肺结核死亡的人数约200-300万(WHO, 2017)。中国科学院微生物研究所刘翠华研究团队一直致力于研究Mtb等重要病原菌与宿主相互作用的分子机制,近年来先后在Nature Immunology, Nature Communication, The Journal of Immunology等杂志发表系列研究工作,发现了Mtb通过调控宿主细胞功能促进对宿主固有免疫逃逸及肺癌发生发展的新机制,并揭示了病原菌与宿主间相互博弈的动态过程及分子机制,为抗结核药物研发提供了新思路和特异靶点。 作为一种胞内致病菌,结核分枝杆菌可经空气被吸入肺泡,随后被肺泡细胞所吞噬。建立感染的第一步是病原菌对宿主细胞的入侵,侵入机体的结核分枝杆菌能在肺泡巨噬细胞内存活并繁殖。巨噬细胞表面存在多种能被致病菌识别的受体,致病菌能识别并利用细胞表面特异性受体完成对宿主细胞的入侵。侵入宿主细胞对致病菌的生长、传播和致病性尤为重要,阻断入侵也是控制感染的有效机制。深入探究结核分枝杆菌入侵宿主细胞的机制能为抗结核病新药的设计和研发提供新的分子靶标。 Mtb基因组中共有四个mce(mammalian cell entry)操纵子(mce1-4),其编码的蛋白组成一大类Mce家族。由于Mce家族蛋白可特异性地结合小分子化合物,并且它们在人基因组中无同源基因,因而是一种理想的潜在药靶。以往研究提示mce3操纵子可能在结核分枝杆菌的致病过程中起重要作用,但该操纵子编码的单个蛋白分子的确切功能尚不清楚。刘翠华研究团队揭示了结核分枝杆菌Mce3C蛋白主要定位在细菌细胞表面,能以一种真核样RGD模序依赖的方式促进分枝杆菌对巨噬细胞的粘附和入侵;同时,该团队利用酵母双杂交系统筛选出了Mce3C潜在的宿主相互作用蛋白—β2整联蛋白。进一步的研究证实了结核分枝杆菌Mce3C蛋白能直接作用并通过存在于细胞表面的β2整联蛋白激活SFKs-Syk-Vav-Rho-ROCK信号轴,并引起细胞骨架的重排进而促进分枝杆菌对巨噬细胞的入侵(请见附图)。这些新的研究成果有助于进一步阐明结核分枝杆菌侵入宿主细胞的分子机制,同时为抗结核药物设计提供了新靶点。 相关研究成果已于近日发表在Cellular Microbiology杂志上,题为“M. tuberculosis Mce3C promotes mycobacteria entry into macrophages through activation of β2 integrin-mediated signaling pathway”。刘翠华课题组的硕士研究生张勇为该文章的第一作者,刘翠华研究员为该文的通讯作者。该研究得到了国家科技部、国家自然科学基金委、北京市自然科学基金委和中科院的资助。