《基于语义相似性测度的诺贝尔物理学奖获得者研究特征探析》

  • 来源专题:数智化图书情报
  • 编译者: 闫亚飞
  • 发布时间:2023-10-14
  • 摘要:基于语义测量指标探究诺贝尔奖获得者论文的时态研究特征,有助于理解科学家的成功模式。

    对于诺贝尔物理学奖获得者的公共数据集,本研究分析了诺贝尔奖获得者发表获奖论文之前的三个不同时期(T1)、发表获奖论文到获奖时间的三个时期(T2)、以及获奖后的时间段(T3)。

    我们通过BERT模型获得了语义上与获奖论文接近的前k篇论文,并使用基于语义特征的四个索引来分析诺贝尔奖获得者论文的时间研究特征。获奖者通常在T1期中期关注获奖研究,他们在获奖领域的进一步研究平均花费是T2期的1.55倍,大多数人在获奖研究上持续了大约15年。此外,我们发现少数获奖者在作为博士候选人时发表的论文在语义上与获奖论文最接近。

  • 原文来源:https://kns.cnki.net/kcms2/article/abstract?v=LeQIq0pPraN7z56UFBXYmp5cqSpFXzXCFpgvv08RLM-paCwYX2_gXVyvFNGjGITtTd2VaxoP2iA2sm-NUUzudAvoDQCbRjqSoXk6VIOEpsfizACnKw8dL-ZF9Yl6N1oD&uniplatform=NZKPT
相关报告
  • 《探索黑洞的“光” | 2020诺贝尔物理学奖授予黑洞研究者》

    • 来源专题:科技大数据监测服务平台
    • 编译者:zhoujie
    • 发布时间:2020-10-13
    • 原文作者:Elizabeth Gibney & Davide Castelvecchi 数学物理学家Roger Penrose与Andrea Ghez、Reinhard Genzel共同获得了诺贝尔物理学奖,后两位科学家在银河系中心发现了一个特大质量黑洞。 2020年诺贝尔物理学奖被授予一位数学物理学家和两位天文学家,表彰他们关于黑洞的发现。黑洞是宇宙中质量最大、最神秘的天体。 奖项的一半被授予英国89岁的数学物理学家Roger Penrose,他用理论证明了爱因斯坦的广义相对论能推导出黑洞的存在——黑洞的引力大到连光都无法逃逸。 1000万瑞典克朗(110万美元)奖金的另一半被授予55岁的美国天文学家Andrea Ghez和68岁的德国天文学家Reinhard Genzel,两人在银河系中心发现了一个特大质量的致密天体,这也是最为人熟知的黑洞。 Roger Penrose、Andrea Ghez和Reinhard Genzel(从左至右)因为关于黑洞的研究获得了2020年诺贝尔物理学奖。来源:David Levenson/Getty, Christopher Dibble, ESO/M. Zamani 从上世纪90年代开始,Ghez和Genzel便各自领导团队,绘制银心附近的恒星运行轨道。他们从研究中得出结论:必然存在一个质量极大、不可见的天体控制着这些恒星毫无章法的运动。负责颁发该奖的瑞典皇家科学院表示,这个名为人马座A*(Sagittarius A*)的天体是迄今证明银心存在特大质量黑洞的最有力证据。 “物理学巨擘” 米兰比科卡大学的天体物理学家Monica Colpi认为三位得奖者实至名归。“Genzel和Ghez的观测数据极其出色,他们观测恒星绕该天体运动的能力也是独一无二的。”他们的数据证明了人马座A*的密度与特大质量黑洞是一致的。 天体物理学家Heino Falcke也表示赞同。“他们为证明星系存在这些黑暗中心做出了奠基性贡献。”荷兰拉德堡德大学的Falcke说。 Penrose是“理论物理学的一位巨擎”,影响了一代代科学家,英国巴斯大学天体物理学家Carole Mundell说。他是“真正有创造力的思想家,他从事的每一件事都充满了无边的想象力、乐趣和强烈的好奇心。”她说。 加州大学洛杉矶分校的Ghez是第四位获得诺贝尔物理学奖的女性——这是女性得奖人数最少的诺贝尔奖项(见“诺贝尔奖得主男女不均”)。2018年,加拿大滑铁卢大学的激光物理学家Donna Strickland成为第三位获得诺贝尔物理学奖的女性,在她之前的55年里,无一女性获得此奖。 “作为第四位获得诺贝尔[物理学]奖的女性,我非常认真地对待这份责任。我希望能激励更多的年轻女性进入这个充满乐趣的领域。”Ghez在新闻发布会上说。 从广义相对论到几何 在1965年的一篇开创性论文中,Penrose从广义相对论出发,证明了黑洞可以在正确的条件下形成——这里的条件是指形成一个能捕获光的界面。在这个界面内,质量会发生不可逆的引力坍缩,产生一个能量密度无限大的区域,即奇点(singularity)。此前的研究人员曾发现,这种必然的结局只能在物理学上不成立的条件下出现。 Penrose的贡献横跨好几个数学和物理学领域。他与图形艺术家M. C. Escher的交流启发他画出了一些不可能的几何物体。上世纪70年代,他开创了一套几何理论:一种非周期性的二维密铺,如今被称为Penrose平铺(Penrose tilings)。2011年摘得诺贝尔化学奖的“准晶体”(quasicrystal)天然拥有这种密铺排列。 Penrose将非常巧妙的数学方法融入了多个物理学分支,目前正在和Penrose合作的加州理工学院数学物理学家Matilde Marcolli表示。“这是一种全新的思考方式。”她说。 60年代末,Penrose提出了“扭量空间”(twistor spaces)理论,尝试让广义相对论和量子力学完全相容,巴基斯坦拉合尔政府学院大学的数学物理学家Asghar Qadir说。扭量空间会改变时空的根本性质。“他提出的想法是,不要把时空看作某种存在的基础,而是一种新出现的事物。”Qadir在博士期间曾跟随Penrose研究扭量理论。 此外,这位数学物理学家曾与已经过世的霍金合作,对奇点开展了进一步的基础性研究。“我的感受是,给Penrose颁奖等于间接给霍金颁奖,这是在嘉奖两人及其团队对黑洞现象的理论物理学解释做出的巨大贡献。”德国科隆大学的天体物理学家Andreas Eckart说。 黑暗中心 如果说Penrose为黑洞的存在奠定了理论基础,那么Ghez和Genzel的团队就是用有力的实验证据证实了银河系的中心就有这么一个黑洞。 早在上世纪60年代,天文学家就开始怀疑大部分星系中心都有一个特大质量黑洞——质量超过太阳的100万倍。银河系自然是研究首选。射电观测已经揭示了银心的人马座A*天体会释放出高能辐射。其他观测结果显示银心布满了恒星,气体高速流动。 Reinhard Genzel团队观测结果的延时视频,显示了这些恒星在20年的时间里如何绕银河系中心的黑洞运行。来源:ESO/MPE 但是,近距离观测这些恒星却是个挑战,因为气体与尘埃会遮蔽来自恒星的辐射。90年代开始,互为竞争对手的Ghez团队和Genzel团队,利用世界上几台最大的望远镜——分别是夏威夷莫纳克亚山的凯克天文台和智利帕拉纳尔的甚大望远镜——以及前沿的观测技术,突破了观测挑战。 其中的关键是,他们找到了在微弱光线下提高分辨率和灵敏度的方法,Genzel团队的前成员Eckart说。两个团队先利用斑点成像法,通过快照采集数据,修正地球大气造成的图像不清。随后,两个团队采用自适应光学技术,这种技术利用一块镜面矫正畸变,从而延长曝光时间,增加进光亮和灵敏度,还能让研究人员在三维空间中追踪恒星运动。 几十年来,两个团队利用这些技术测量了成千上万个靠近银心的恒星,并绘制了约30个恒星的运行轨道,最终将这个黑洞的质量确定在约400万倍的太阳质量,并对其大小的上限达成了一致。 Eckart认为,银河系中心存在特大质量黑洞的结论,是团队合作以及“许多论文和项目”不断积累的结果。目前仍在与Genzel合作的Eckart表示,Genzel的刻苦勤奋是众所周知的,“他力求简明,是位非常出色的科学家。”而根据《自然》2013年的一篇人物特写(https://www.nature.com/news/astronomy-star-tracker-1.12622),Ghez对高强度的工作也是甘之如饴,全身心付出。“她非常专注,解决问题的办法很直接。”Eckart补充道。 原文以 Physicists who unravelled mysteries of black holes win Nobel prize为标题发表在 2020年10月6日的《自然》新闻版块。Nisha Gaind和Holly Else亦为本文提供了额外报道。 © nature doi: 10.1038/d41586-020-02764-w
  • 《科学突破中跨学科研究的动态与特征——120年来诺贝尔奖获得者研究的个案研究》

    • 来源专题:数智化图书情报
    • 编译者:闫亚飞
    • 发布时间:2023-10-14
    • 本研究探讨了主要原创性科学成果的跨学科动态和特征。基于知识整合的视角,结合文献计量学和社会网络分析,对诺贝尔自然科学奖获得者研究的重点出版物及其参考资料进行调查。这些数据涵盖了1901年至2020年间获得的585位化学、物理和生理学或医学奖得主,以及1887年至2012年间发表的835篇关键出版物及其10894篇引用出版物。主要发现如下:首先,跨学科的知识整合是原始科学突破的一个基本特征,尽管有影响力的成就通常是由大量遥远知识但学科较少的新颖组合产生的。其次,100多年来,自然科学各学科的发展遵循着不同的跨学科动态。从综合学科的集中程度来看,化学和物理经历了从集中到分散的动态转变,而生理学或医学则呈现出更普遍的集中趋势。第三,诺贝尔奖获得者的研究呈现出更大程度的知识互联趋势,组合研究方法、工具和基础学科的迁移有助于知识组合结构的日益激烈。促进知识交流的衔接学科在三个时期(20世纪至40年代、50年代至70年代和80年代及以后)的知识网络中发生了变化。