《美国国家标准与技术研究院(NIST)研究团队研发微型新激光器,填补了可见光彩虹中长期存在的“绿色空白”,开辟了新的应用领域》

  • 来源专题:计量基标准与精密测量
  • 编译者: 张宇
  • 发布时间:2024-09-05
  • 科学家们多年来一直在制造小型的红色和蓝色激光器,但其他颜色的激光器一直是个挑战。研究人员通过创新的方法制造出小到可以安装在芯片上的橙色、黄色和绿色激光器,填补了一项重要的技术空白。在这个波长范围内的低噪声、紧凑型激光器对于量子传感、通信和信息处理有非常重要的作用。

    制造绿色激光并不容易。

    多年来,科学家们已经制造出能够产生红色和蓝色光的小型、高质量激光器。然而,他们通常采用的方法——向半导体中注入电流——在构建发射黄色和绿色波长光的微型激光器方面效果并不理想。研究人员将可见光谱这一区域中稳定、微型激光器的缺乏称为“绿色空白”。填补这一空白将为水下通信、尖端医疗等领域开辟新的机会。

    实际上,绿色激光指示器已经存在了25年,但它们只在非常窄的绿色光谱范围内产生光,并且没有集成在芯片中,所以无法与其他设备集成到一起来执行有用的任务。

    现在,美国国家标准与技术研究院(NIST)的科学家们通过修改一个微小的光学元件——一个足够小以至于可以安装在芯片上的环形微共振器——来填补了“绿色空白”。

    微型绿色激光光源可以改善水下通信,因为在大多数水环境中,蓝绿色波长的光在水中几乎是透明的。其他潜在的应用包括全色激光投影显示器,以及包括可以治疗一种眼部血管增生的糖尿病视网膜病变的激光治疗医疗设备。

    在这个波长范围内的紧凑型激光器对于量子计算和通信的应用也很重要,因为它们有可能将数据存储在量子比特中,量子比特是量子信息的基本单位。目前,这些量子应用依赖于体积更大、重量更重、功率更大的激光器,这限制了它们在实验室外部署的能力。

    几年来,由NIST的Kartik Srinivasan和NIST与马里兰大学之间的研究合作伙伴联合量子研究所(JQI)领导的一个团队一直使用由氮化硅组成的环形微共振器将红外激光转换为其他颜色。当红外光被泵入环形共振器时,光会在其中旋转数千次,直到达到足够高的强度,以强烈地与硅氮化物相互作用。这种相互作用,会产生两种新波长的光,被称为闲波和信号波,这一现象叫做光学参量振荡(OPO)。

    在之前的研究中,研究人员产生了几种可见激光的单独颜色。根据微共振器的尺寸(它决定了产生的光的颜色),科学家们产生了红色、橙色和黄色波长的光,以及处于黄色和绿色光边缘的560纳米波长的光。然而,团队无法产生填补绿色空白所需的全部黄色和绿色系列。

    “我们不想只擅长产生几个波长,”NIST科学家、新研究的合作者Yi Sun表示。“我们想要覆盖空白中的整个波长范围。”

    为了填补这一空白,研究团队以两种方式修改了微共振器。首先,科学家们略微加厚了它。通过改变其尺寸,研究人员更容易产生深入绿色空白的光,波长最短可达532纳米(十亿分之一米)。有了这个扩展的范围,研究人员终于覆盖了整个“绿色空白”。

    此外,研究团队通过蚀刻掉微共振器下方的一些二氧化硅层,使微共振器暴露在更多的空气中。这样做的效果是使输出的颜色对环形微共振器尺寸和红外泵浦波长的敏感性降低。较低的敏感性给了研究人员更多的控制权,这样就可以在他们的设备上产生略微不同的绿色、黄色、橙色和红色波长。

    因此,研究人员发现他们可以在整个绿色空白区域创造出超过150个不同波长的光,并能够对它们进行微调。“以前,我们可以使用OPO在激光颜色中进行大的调整——从红色到橙色到黄色再到绿色——但在每个颜色带内进行小的调整却很困难,” Srinivasan指出。

    科学家们目前正在努力提高产生“绿色空白”波长区间的激光颜色的能量效率。目前,输出功率仅为输入激光的几个百分点。改善输入激光与波导之间的耦合,使波导将光更加顺畅地引导到微共振器中,以及进一步改进提取和产生光的方法,便可以显著提高效率。

    这些研究人员包括来自JQI的Jordan Stone和Xiyuan Lu,以及来自华盛顿州雷德蒙德市Meta现实实验室研究的Zhimin Shi,他们于8月21日通过线上发表的方式在《Light: Science and Applications》期刊上报告了他们的发现。

  • 原文来源:https://www.nist.gov/news-events/news/2024/08/tiny-new-lasers-fill-long-standing-gap-rainbow-visible-light-colors-opening
相关报告
  • 《美国国家标准与技术研究院(NIST)通过3D立体深度传感器进行影响噪声的因素研究》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2025-04-29
    • 3D 立体深度传感器在许多领域都有广泛应用,包括自动驾驶汽车的传感、逆向工程和制造自动化等。这些传感器的性能会受到多种因素的影响,例如传感器结构、传感器技术、传感器设置、环境等。为了对这些传感器进行表征以及制定相关标准,需要了解影响传感器输出的参数。随着机器学习(ML)在 3D 点云和深度数据方面的应用日益普及,了解这些模型使用的数据对于提高此类深度传感器的采用率至关重要。在某些领域中,传感器噪声和瞬态效应可能会成为主导因素。在将传感器数据与ML算法结合使用之前降低噪声对于提高算法准确性是必要的。为了对深度传感器进行表征,我们使用具有不同光泽度、颜色和纹理/图案的目标进行了实验。此外,我们还通过研究传感器参数(如曝光、增益和激光功率)来探究传感器数据质量和噪声。我们发现在传感器捕获的 2D 图像和深度数据中都存在瞬态效应。这些实验有助于为特定应用提供可能建议的操作条件以及针对这些传感器的未来标准。 会议录下载链接:https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=959923
  • 《美国国家标准与技术研究院(NIST)采用新方法精确测量微量样本的放射性》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2025-07-10
    • 近日,美国国家标准与技术研究院(NIST)研发的一种新技术能够实现在识别发生衰变的原子类型的同时检测单个原子的放射性衰变事件。这一技术进步将有助于改善癌症的治疗方案,用于先进反应堆的核燃料再处理以及其他领域。一旦全面投入使用,该技术有望在短短几天内完成传统上需要数月才能完成的任务。 NIST的研究人员展示了一种新的、更快的方法来检测和测量微量放射性物质的辐射值。这项被称为低温衰变能谱法(DES)的创新技术可能会产生深远的影响,其影响范围可能涉及从改善癌症治疗到确保核废料的安全清理以及其他多个领域。 这项新技术的关键是过渡边缘传感器(TES),这是一种被广泛应用于辐射特征测量的专用设备。TES提供了一种革命性的功能来记录单个放射性衰变事件,同时监测其中不稳定的原子释放一个或多个粒子的过程。通过从许多次单独衰变事件中积累的数据,研究人员可以识别出哪些不稳定的原子(即放射性核素)会产生这些事件。 “TES比熟悉的盖革计数器或其他当今使用的探测器要先进得多,”NIST物理学家Ryan Fitzgerald说。“它不是简单地发出咔嗒声来表示有辐射,也不是模糊地指示衰变能量的高低,而是为我们提供了放射性物质存在的详细指纹信息。” TES设备在接近绝对零度的极低温度下运行。当样品中的物质发生放射性衰变时,释放的能量被TES吸收。这种吸收的能量会导致TES的电阻发生微小的变化。研究人员精确测量了电阻的这种变化,从而获得了整个衰减过程的高分辨率“能量特征”。通过分析来自多个衰变事件能谱变化的详细数据,研究人员便可以识别出正在衰变的特定放射性原子。这是完全可能的,因为不同的放射性原子在衰变时会释放出独特的能量特征。 采用早期的方法,在同一时间,只能进行放射性剂量的测量或者识别出具体存在哪些放射性原子——而不是同时完成这两项工作。全面表征一个样品曾经需要使用多种技术。相比之下,DES法在识别放射性元素的类型的同时,又能完成量化其放射性水平的工作。 当研究人员接收到装满放射性液体的桶时,他们需要识别这种神秘物质的类型并测量其放射性核素的含量,以便安全地处理它们。通常,这个过程可能需要几个月的时间,但过渡边缘传感器(TES)可以显著缩短这一过程所需的时间。 “我们现在可以在短短几天内就从一个微量的样本中获得完整的放射性特征数据,而不再需要等待数月才能获得结果,”Fitzgerald说。 传统上,测量放射性需要多种方法和复杂的程序,使用称为示踪剂或校准剂的附加材料。然而,新方法提供了一种简化的途径,即使在没有这些附加材料的情况下,也能准确测量出微量样本的放射性。这使科学家们能够更好地监测、使用和保护影响公众健康和安全的放射性物质。 在他们的方法中,研究人员使用一种特殊的喷墨装置小心地将微量(不到一克的百万分之一)放射性溶液均匀的分布到薄金箔上。这些金箔的表面布满了大小仅为十亿分之一米的微小孔洞。这些纳米孔有助于吸收放射性溶液的微小液滴。 通过精确测量使用喷墨装置分配的溶液的质量,然后测量金箔上干燥后的样品的放射性,研究人员就可以计算出样品每单位质量的放射性,即“比活度”。 这种喷墨方法使他们能够在处理极少量放射性物质的同时,仍能准确测量其放射性。 这种技术的潜在应用场景非常广泛。在医学领域,这项技术可有确保用于癌症治疗的放射性药物的纯度和效力的准确性。在核能领域,它可以快速的识别乏燃料后处理过程中的放射性成分,从而加速新型先进反应堆的开发。 新报告的研究是更大规模努力的第一步,这一努力被称为True Becquerel(TrueBq)项目,旨在改变我们监测和表征放射性的方式。用于计量物质放射性衰变的单位是该项目名称的由来,以纪念发现放射性现象的法国物理学家亨利·贝克勒尔(Henri Becquerel)。 更广泛的TrueBq项目旨在开发一种更全面的测量系统,凭借这种全新的系统将可以处理包括复杂的混合物在内的各种放射性物质。它将把高精度天平系统与TES设备结合起来,以前所未有的精度测量放射性物质的比活度。 这种新方法对传统工作流程进行了重大改进,传统工作流程通常涉及多种方法、化学处理以及化学示踪剂和标准品的使用。通过简化测量过程,TrueBq项目有望在减少分析所需时间的同时提高测量的准确性。 通过TrueBq项目所开发的创新型技术可以有效提高NIST服务各领域客户的能力。NIST目前提供多种以客户为中心的测量服务,包括校准、标准参考物质(SRMs)和能力验证。所有这些服务未来都将受益于TrueBq项目所开发的新技术,服务的流程将会更加简化、服务内容将会更加多样化、同时服务质量的不确定性也会进一步减少。 虽然TrueBq项目目前的重点是改进NIST内部的测量工作,但研究人员对这项技术有着长远的计划。未来,他们希望开发出更便携、更人性化的系统版本,这些版本可以部署在NIST之外的实际应用场景中,以便在医学、环境治理和核废料管理等领域中发挥关键作用。 NIST的研究团队已于2025年7月8日在《Metrologia》期刊上发表了其研究成果。(DOI:10.1088/1681-7575/adecaa)