《美国国家标准与技术研究院(NIST)通过3D立体深度传感器进行影响噪声的因素研究》

  • 来源专题:计量基标准与精密测量
  • 编译者: 张宇
  • 发布时间:2025-04-29
  • 3D 立体深度传感器在许多领域都有广泛应用,包括自动驾驶汽车的传感、逆向工程和制造自动化等。这些传感器的性能会受到多种因素的影响,例如传感器结构、传感器技术、传感器设置、环境等。为了对这些传感器进行表征以及制定相关标准,需要了解影响传感器输出的参数。随着机器学习(ML)在 3D 点云和深度数据方面的应用日益普及,了解这些模型使用的数据对于提高此类深度传感器的采用率至关重要。在某些领域中,传感器噪声和瞬态效应可能会成为主导因素。在将传感器数据与ML算法结合使用之前降低噪声对于提高算法准确性是必要的。为了对深度传感器进行表征,我们使用具有不同光泽度、颜色和纹理/图案的目标进行了实验。此外,我们还通过研究传感器参数(如曝光、增益和激光功率)来探究传感器数据质量和噪声。我们发现在传感器捕获的 2D 图像和深度数据中都存在瞬态效应。这些实验有助于为特定应用提供可能建议的操作条件以及针对这些传感器的未来标准。

    会议录下载链接:https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=959923

  • 原文来源:https://www.nist.gov/publications/investigating-factors-influence-3d-stereo-depth-sensor-noise
相关报告
  • 《美国国家标准与技术研究院(NIST)对增材制造中的2D和3D原位测量在聚合物和金属材料中的应用的研究》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2024-09-09
    • 在3D打印或增材制造(AM)的整个领域中,对过程-结构-性能-过程(PSPP)关系的理解取决于准确的测量。制造的材料是三维的,因此,除了二维测量之外,三维测量在整个PSPP链中提供了深刻的洞察力。这项工作将概述我们项目中最近部署的几种测量技术,以进行此类测量,并包括这些测量的相关发现。测量系统可以根据它们在制造和使用过程中的使用点进行分类。比如原位过程测量指的是在材料制造过程中进行的测量。或者说使用原位机械测试的X射线计算机断层扫描(XRCT),指的是在已经生产的部件变形过程中获取三维图像的过程。 第一类测量阐明了制造过程,我们最近的工作中有两例。第一例是基于原子力显微镜(AFM)的测量,可以原位使用来推断变化,如粘度和薄膜柔顺性,这些变化表明树脂中的化学变化和固化。这可以用来测量转化率。第二类测量利用微型X射线计算机断层扫描(XRCT)和安装在XRCT仪器内的加载框架,在加载进程中进行中断的原位测量。 虽然已经讨论了一系列技术,但总体的收获是,在整个PSPP工作流程中仔细进行的3D实验有助于理解增材制造产品组合中的关键力学行为,将生产能力与测量能力相匹配。这些测量有助于在分辨率、保真度以及材料质量和密度方面更好地进行增材制造。它们还允许对材料变形特性有更严格的理解,这可能会通知更多预测性模型。最后,它们可以以新的方式阐明故障模式,以便制造选择和模型可以被制作出来,以优化生产率、疲劳寿命以及零件/特征分辨率等因素。 相关研究成果发表于7月15-19日召开的《2024 ASPE-euspen Summer Topical Meeting on Advancing Precision in Additive Manufacturing》会议论文集中。
  • 《美国国家标准与技术研究院(NIST)发布《NIST温室气体测量项目:十年的关键成就》报告》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-06-11
    • 在第21届缔约方会议(巴黎)上,人们普遍认为,减少温室气体排放和减缓大气变暖的计划将需要了解现有的排放,以及监测、报告和核实各种来源的排放的计划。由于70%的温室气体(GHG)排放来自世界上大多数人口居住的城市环境,因此需要更加强调对城市环境的监测。 作为美国的国家计量研究院,美国国家标准与技术研究院(NIST)已经对这些测量和标准的挑战做出了回应: a)提高美国准确测量温室气体排放的能力; b)展示城市大气监测网络(自上而下或大气测量方法)在定量确定工业、住宅、交通、发电和其他活动产生的温室气体通量方面的能力; c)利用基于社会经济数据的空间明确排放模型(自下而上或排放模型)方法补充此类测量; d)证明两者的结合提高了对排放估算的信心,同时确定了有待改进的领域。 NIST项目的建立是为了改进对二氧化碳、一氧化碳、甲烷、氧化亚氮、二氧化碳和氧气的同位素成分、气溶胶和温室气体烟囱排放的测量。开发了新的遥感方法,应用于大范围的技术,扩大了NIST的气体标准计划,与NOAA、WMO的温室气体中央校准实验室密切合作,通过SI可追溯性确保数据的准确性和一致性,并加强对大气温室气体排放测量的相互认可。与其他机构合作,开发了先进的计算工具,以模拟空间明确的排放源、生物排放和吸收过程,并使城市温室气体源归因能够从大气测量中得到。2010年,NIST与普渡大学、NOAA和宾夕法尼亚州立大学合作,在印第安纳州的印第安纳波利斯建立了第一个城市试验台(“涌入项目”)。在洛杉矶(2012年)和东北走廊(2014年)建立了额外的试验台,以测试方法在一系列气象条件和排放概况下的适用性。对于内流,在3年的分析期间(2012-2015年)的结果表明,自上而下的模型和排放模型之间的一致性<3%。在综合方法的测试中,自下而上的排放抵消了+15%,自上而下的方法抵消了-14.2%。这一性能显示出足够的灵敏度,可以每年跟踪缓解行动。(全球都设定了每年1%至3%的减排目标。)200多份档案出版物已产生并被引用超过10,000次,并培养了一支杰出的美国研究团队成功参与应对这一全球挑战。在中国和欧洲合作组织了研讨会,将计量和气象界聚集在一起,共同应对这一共同关心的挑战。世界气象组织的全球温室气体综合信息系统(IG3IS)的形成得到了催化,预计将启动关于温室气体测量的国际文件标准。NIST为推进美国温室气体综合测量、监测和信息系统的国家战略的发展做出了贡献。NIST量化温室气体排放的努力对于实施美国商品期货交易委员会(CFTC)发布的关于在自愿碳市场中列出自愿碳信用衍生品合同的建议指导也至关重要。NIST在解决由地球变暖的大气所带来的排放量化挑战方面做出了重大贡献,并采取了针对导致变暖的主要因素的措施,即温室气体排放到大气中。