《应用生物组学分析方法研究90天饲喂试验的转基因玉米品种》

  • 来源专题:转基因生物新品种培育
  • 编译者: zhangyi8606
  • 发布时间:2019-05-30
  • 利用欧洲唯一栽培的转基因玉米MON810品种,对转基因玉米及对应的非转基因玉米进行了比较。通过包括转录组学、蛋白质组学和代谢组学在内的组学特征分析谷物样品的差异。对其他栽培玉米品种进行了分析,为不同栽培品种间存在的变异性提供参考。观察到的改良玉米品种与未改良玉米品种之间的差异不超过未改良玉米品种之间的典型差异。使用这些先进的分析方法以分析新的植物材料,与全食品评估的动物喂养试验的结果进行了比较。没有观察到需要进一步调查的转基因品种的变化迹象。此外,还表明如果对劣质玉米样品进行类似的分析,就可以获得这种迹象。生物组学数据提供了植物材料的详细分析信息,有助于建立新(转基因)植物品种的风险评估程序。

相关报告
  • 《新型转基因玉米产量提高10%》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2019-12-13
    • 长期以来,基因工程的支持者们一直坚信,它将有助于满足全球日益增长的粮食需求。然而,尽管已经培育出许多抗虫害和抗除草剂的转基因作物,科学家在促进农作物产量方面却一直难有作为。如今,研究人员首次证明,通过改变一种促进植物生长的基因,他们终于可以放心地将玉米产量提高10%,而不用管生长条件是好是坏。 “这太不可思议了。”并未参与该项研究的美国艾姆斯市爱荷华州立大学分子生物学家Kan Wang说。她表示,除了提高玉米产量外,新的转基因技术还将激励研究人员努力提高其他农作物的产量。 全世界种植最广泛的转基因作物(包括大豆、玉米和棉花)都是通过一些相对简单的基因改良创造出来的。例如,通过将细菌的一个基因添加到特定的农作物品种中,科学家赋予了它们合成一种可以杀死多种昆虫的蛋白质的能力。另一种简单的基因操作结果可以使农作物抵抗草甘膦或其他除草剂,这样做的一个好处是让农民可以在不侵蚀土壤的前提下除掉杂草。还有一种操作可以在干旱时保护农作物。但是,由于植物的生长过程涉及了许多复杂的遗传因素,因此想要培育出在良好条件下能够产出更多粮食的农作物,难度很大。 从2000年开始,世界各地的转基因公司开始认真筛选能够提高农作物产量的单个基因。然而只有少数经过鉴定的基因显示出了希望,并且由于成功率低,许多公司已经减少或停止筛选与农作物产量有关的基因。 但是Corteva农业科学公司(一家位于特拉华州威明顿的化学和种子公司)的研究人员决定研究那些像总开关一样影响农作物生长和产量的基因。 研究人员选择了在许多植物中常见的一类名为MADS-box基因,然后在其中选择了一种基因(zmm28)来改变玉米植株。研究调节发育的基因的挑战在于确保它们在正确的时间和正确的组织类型中开启了正确的数量。参与领导这项研究的Corteva农业科学公司的植物生理学家Jeff Habben说,如果基因过于活跃,“很容易把植物搞得一团糟”。 研究小组的目标是使zmm28与一个新的启动子融合,后者是一段控制基因激活时间的脱氧核糖核酸。在尝试了十几次之后,他们找到了一种可靠的方法。 通常,当玉米开始开花时,zmm28就会启动。而增加的启动子能够比自然发生更早地启动zmm28,并且在开花后继续促进基因的有益作用。 “如果你让基因工作得更努力、更长久,你就能让植物表现得更好。”Wang说。 研究人员在48种商用玉米中测试了增强基因的表现,这些玉米被称为杂交玉米,通常用于饲养牲畜。在2014年至2017年的美国玉米种植区田间试验中,研究人员发现,转基因杂交作物的产量通常比对照组作物多3%至5%。 研究小组本周在美国《国家科学院院刊》上发表报告称,有些玉米的产量增加了8%至10%。同时不管生长条件是好是坏,这种好处都是存在的。 “这是转基因作物在田间环境中对产量发挥实际作用的最好例子之一。”英国哈彭登市洛桑研究所农作物科学家Matthew Paul说。 导致玉米增产的原因有几个。首先,经过基因改造的植物的叶子要稍大一些,从而使植物将阳光转化为糖分的能力提高了8%到9%。 “这种增长确实是一件大事。”Corteva农业科学公司植物生理学家Jingrui Wu说,因为通过基因工程很难改善光合作用。 同时这些植物在利用氮的效率方面也提高了16%到18%。氮是一种重要的土壤营养物质,由于复杂的遗传因素,使其成为植物育种家难以控制的另一种特性。 比利时佛兰德斯VIB研究所分子生物学家Dirk Inze说:“从商业角度来说,这看起来很有希望。”Corteva农业科学公司已经向美国农业部(USDA)申请批准新的高产杂交品种。(虽然zmm28及其启动子在玉米中自然存在,但它们是使用被USDA监管的一种生物技术配对的。) Habben估计,这项新技术大概需要6到10年的时间才能获得世界各国的正式批准。Inze说,相关的调控基因很有可能提高其他谷物的产量。 玉米的大规模田间示范“强化了我们的信念,即如果我们处理得当,内在产量是可以提高的”。Wang说,“这确实会给人们带来灵感。” 相关论文信息:https://doi.org/10.1073/pnas.1902593116
  • 《韩方普研究组在CRISPR-Cas9玉米基因组编辑方法研究中取得新进展》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-12-01
    • 基因组编辑是生命科学新兴的技术并被迅速在每个实验室应用,特别是基于CRISPR-Cas9系统的基因编辑工具近年来发展较快,在医疗、农业等领域展现巨大的应用潜力。然而此前,在玉米等部分作物中基于农杆菌转化的载体进行基因组编辑的效率偏低,在一定程度影响到该技术的高效利用尤其是基于CRISPR-cas9系统的高通量突变allele筛选。因此,如何提高编辑效率是大家关注的问题。另一个非常关键的问题是如何降低脱靶或不脱靶,这也是实际应用的限制因素。   中国科学院遗传与发育生物学研究所韩方普实验室前期选择了若干玉米减数分裂特异基因的启动子用于驱动Cas9基因的表达,希望在配子中实现高效的基因组编辑,从而在T1代获得大量纯合或双等位的突变体。其中用到的一个为玉米DMC1基因启动子,构建了DPC(DMC1 promoter-controlled) CRISPR-Cas9载体系统,用该载体系统转化玉米幼胚后,结果意外发现:凡是抗性愈伤组织靶位点均发生基因组编辑,另一个非常有趣的结果是:T0代植株中出现60-70%左右的纯合或双等位的突变体,其余为杂合或嵌合的突变体植株。并且这些纯合或双等位突变体植株(再生自一个抗性愈伤组织)含有不同的突变allele类型。通过对多个基因靶点(包括一个标记基因zb7,突变能产生白化的表型)的编辑实验,验证了该载体系统的高效性(下图为对玉米zb7基因靶点的编辑)。这一技术对韩方普研究组研究细胞分裂突变体的基因功能提供了非常快速高效的方法,当代纯合或嵌合突变体就可以直接观察细胞学及染色体行为与功能。此外,也证实了产生的突变能够稳定遗传到T1代,并且新的突变allele类型在T1代也被发现。通过全基因组测序分析,在预测的1000多个潜在脱靶位点没有发现脱靶突变。由于DMC1基因在进化中非常保守,该基因的启动子也可能有潜力在别的植物中发挥类似的作用,虽然科学家在小麦中的初步尝试结果不甚理想。   该研究成果于2018年3月23日在线发表于Plant Biotechnology Journal杂志上(DOI:10.1111/pbi.12920)。韩方普研究组博士生冯超为该论文的第一作者,该研究得到转基因重大专项及科技部育种专项的资助。