《【Science Advances】科学家发现盐能使电池寿命延长10倍》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2025-07-28
  • 研究机构与人员:

    沙特阿卜杜拉国王科技大学(KAUST)可再生能源与储能技术卓越中心(CREST)团队,由首席研究员Husam Alshareef教授领导,主要实验由Yunpei Zhu博士完成,Omar Mohammed、Omar Bakr等教授共同参与。

    核心发现问题根源:水系电池寿命短源于阳极处"自由水分子"引发的寄生化学反应,消耗能量并腐蚀电极。

    解决方案:添加廉价硫酸盐(如硫酸锌),通过其"水胶"作用稳定水分子结构,减少自由水含量,使寄生反应降低90%以上。

    效果验证:实验显示锌阳极电池寿命延长超10倍,且该机制可能适用于所有金属阳极水系电池。

    研究价值经济性:硫酸盐成本低廉且化学性质稳定普适性:初步证实对多种金属阳极有效

    产业意义:助力2030年预计超百亿美元规模的水系电池市场发展,为太阳能等可再生能源并网提供比锂电更安全的储能方案。

    发表信息:研究成果发表于《Science Advances》期刊,被评价为"揭示了以往被忽视的水分子结构关键参数"。

  • 原文来源:http://www.sciencedaily.com/releases/2025/07/250726234421.htm
相关报告
  • 《俄罗斯科学家发现提高锂离子电池容量和快速充放电方法》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-01-03
    • 俄联邦研究中心“俄科院西伯利亚分院克拉斯诺亚尔斯克科学中心”下属的基连斯基物理所与西伯利亚联邦大学和国家研究型技术大学“莫斯科钢铁合金学院”的科学家提出,使用石墨烯与单层二硫化钒薄膜的化合物作为锂离子电池的阳极材料,将使电池的容量和充电-放电速度得到提高。该研究结果已发表在《The Journal of Physical Chemistry》杂志上。 现在,锂离子电池是许多设备(从手机到电动汽车)最普及的电源。与传统电池相比,这些电池的比容量高、使用寿命长和安全性好。尽管有这些优势,增加电池的容量和提高充电速度仍是亟需解决的问题。 锂离子电池的物理基体是由多孔聚合物材料分隔开的两个电极,即阳极(正)和阴极(负)。充电时,电流把锂离子从阴极移动到阳极,而电池使用时,锂离子向相反方向移动。当电池电量耗尽时,电极之间锂离子的移动能力很低,这就是为什么智能手机买了几个月后,需要比原来更频繁地充电的原因。 现在,使用石墨烯可以延长电池的寿命。石墨烯是一种独特的二维材料,因发现该材料在2010年授予了诺贝尔物理学奖,它的比表面积大、导电性和弹性好。石墨烯可广泛用于各个工业领域,包括储能设备。 俄科学家研制的复合材料是由两种异质层(石墨烯和二硫化钒)组成的二维结构,这种薄片的厚度大约为1纳米。研究证实,不仅可以把锂离子限制在该材料的表面上,而且还可以约束在层间的空间里,最终结果导致材料的高比容量。 科学家估计,该复合材料的正极材料容量可达569mAh/g,比现在锂离子电池最常用于阳极的石墨要高出几乎一倍。理论计算表明,石墨烯和钒的化合物不仅保证电子转移的效果好,而且确保了材料的机械强化。 除了容量之外,该复合材料关键的特点是锂离子在材料内部的迁移率高。这就可以快速给电池充电或者给大功率设备供电。此外,离子的高迁移率能够使电池在低温下正常工作。 在研究中科学家还发现另一个重要的特征,在材料充填锂离子后,也能够在复合材料里保持石墨烯独特的电子特性。科学家认为,这种效应为控制石墨烯基纳米材料的性能提供了新的可能。这项研究得到了俄联邦教育科学部和俄罗斯基础研究基金会的资助。
  • 《科学家发现:分子抢座位 损害电池性能》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-08-23
    • 据报道,太平洋西北国家实验室的科学家们发现,电池中的分子也会玩一种“抢座位”的游戏,进而损害电池性能。研究人员证明,氧原子的激发能够提升锂离子电池性能,同时也会造成损伤。这一发现为制造寿命更长、容量更大的可充电锂离子电池提供科学依据。 氧的缺点 控制分子的结合和流动方式,对电池储能和释放能量至关重要。在锂离子电池中,充电时,锂离子从正极通过电解质流向负极;放电时,相同的离子会返回正极,精确地回到所属晶格中,晶格里还有其他原子,比如氧、镍、钴和镁。这种循环往复使电池能够储存和释放能量。 为了促进这一过程,科学家们利用氧作为电子的供体,增加从正极中流出的锂。但是,“被激发”的氧原子能对精心构造的正极造成破坏。PNNL研究小组发现,这些氧分子是制造混乱的罪魁祸首,它们的流动性很强,很可能从表面逃逸,导致电池容量减少,最终导致电池故障,它们可以轻松地交换分子位置,从而影响电池结构。 领导这项研究的科学家表示:“利用氧原子提供电子,可以增加容量。然而,这是要付出代价的,人们还没有意识到这一点。我们知道氧可以提高电池的性能,但还没有完全理解其中的原理。” 正极大战 Wang的团队精确追踪正极中氧发生的变化,揭示了分子之间进行的“抢座位”游戏,其中包括被激发的氧“霸王”,它们趁机从整体结构中离开,造成巨大的缺口,锂离子阻碍了它们原路返回。 研究小组发现,氧原子贡献电子后,过度激发的氧原子很容易从正极表面逃逸,在精心构造的电池晶格中留下空位。表面的氧原子离开后,在整体结构中,其他氧原子就会挤进这些空位里。越来越多的氧分子也跟着发生连锁反应,进入空隙并逸出表面。随着这一过程的继续,缺陷从正极表面一点点渗透至更深的材料中,形成大洞。这种位置交换会破坏电池之前有序的原子结构。氧原子离开后留下的空位会形成空隙,造成巨大的屏障,阻止锂离子回到原有位置。其他原子,如镍、镁、钴和氧,开始四处移动,像恶霸一样横行霸道,在锂进行必要的化学反应时,很可能偷走原本属于锂的位置。 如果越来越多的锂原子不能精确地回到自己在正极中的位置,那么,能够在正负极之间往来的锂原子就会减少,电池储存的能量将越来越少。大量的空位或空隙会破坏晶格的稳定性,导致容量减少,最终导致电池失效。 为任性的氧做保镖 ”一旦失去足够的氧原子,电池容量就会损失,整个结构随之崩溃。“Wang说。在此项研究中,他所在的PNNL团队与来自中国北京理工大学、劳伦斯伯克利国家实验室和阿贡国家实验室的科学家展开合作。 该团队正在探索阻止此类缺陷的方法。有一种想法是稳定表面的氧,将氧原子更紧密地锁在应有位置,阻止它们逃逸。研究人员正在尝试利用氧化锆分子施加化学影响,并充当保镖,使氧原子保持在适当位置,从而减少氧损失。这有助于保持整体结构,让锂离子更从容地移动。