研究背景 配位聚合物(CP)/框架(CF),包括金属有机框架(MOF),是一种应用广泛的多孔材料。因其具有良好的物理、化学性质,如化学组成可调、孔隙率高、比表面积大等优点,引起了人们广泛的关注。普鲁士蓝类似物(PBA)是一种典型的配位框架材料,可用通式A x M 1 [M 2 (CN) 6 ] y ·zH 2 O来表示,其中M 1 /M 2 是由氰基连接的过渡金属,A是嵌入PBA框架间隙的阳离子。普鲁士蓝(PB)和PBA纳米材料在能源储存与转化等领域有着良好的应用前景。例如,有研究者发现,在PBA的结构中制造非常规的氰基空位可以提高其析氧反应活性。 过渡金属磷化物(TMP)是一类具有较高催化活性的非贵金属电化学催化剂,其可以由PBA或MOF衍生而来。然而,所获得TMP通常需要较高的煅烧温度,这不仅会破坏PBA原始的结构并可能导致金属中心的团聚。因此,制造此类材料,同时还要避免纳米颗粒的团聚,并保持其表面活性,仍然是一种挑战。
成果简介 近日, 扬州大学的研究人员与中国科学院宁波材料所的研究者合作 ,通过设计、研究,将一种镍钴普鲁士蓝类似物纳米笼作为多金属磷化物纳米粒子(pMP-NP)原位分散和锚定的载体。得益于普鲁士蓝类似物纳米笼多孔的表面,以及PBA与pMP-NP之间的协同作用,使得最终产物NiCoFe-P-NP@NiCoFe-PBA纳米笼具有较好的氧析出反应活性。通过对比研究,发现该材料的析氧性能优于NiCoFe-PBA纳米立方体,NiCoFe-P纳米笼,NiFe-P-NP@NiFe-PBA纳米立方体,以及CoFe-P-NP@CoFe-PBA纳米盒子。这项研究工作不仅提供了一种在PBA纳米笼内原位锚定pMP-NP的合成策略,而且通过分析金属磷化物与PBA基底之间的电子转移相互作用,为提高金属磷化物纳米材料的析氧反应活性提供了一种新的见解。该论文以题为“ In Situ Anchoring Polymetallic Phosphide Nanoparticles within Porous Prussian Blue Analogue Nanocages for Boosting Oxygen Evolution Catalysis ”发表在知名期刊 Nano Letters 上。