《Cell Reports | 上海药物所合作构建深度神经网络模型解密磷酸化位点的功能景观》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-09-05
  •   随着高通量质谱技术的高速发展,研究人员可以快速从蛋白质组学中挖掘到更多更为可靠的翻译后修饰数据信息。在翻译后修饰组学研究中,磷酸化(Phosphorylation)修饰作为涉及蛋白质范围最广泛及修饰位点数量最多的修饰类型,成为了研究人员研究的重点。磷酸化修饰通过影响蛋白质的活性、蛋白质—蛋白质相互作用及蛋白质细胞内定位等方式调节蛋白质的功能。随着组学技术的发展及精准医学概念的提出,蛋白质的磷酸化异常与疾病的发生发展密切相关,包括癌症、神经退行性疾病以及心血管等疾病,为疾病诊断和靶标发现提供了潜在有价值的生物学空间。过去十多年间,人体中鉴定到的蛋白质磷酸化修饰位点的数目超过50万条。然而,由于生物功能实验的复杂性,目前具有功能注释信息的磷酸化位点不到一万条,对磷酸化位点的功能研究成为翻译后修饰位点研究中的“瓶颈”问题。
      针对以上问题,中国科学院上海药物研究所罗成课题组和苏州大学系统生物学研究中心梁中洁课题组组成研究团队,于2023年9月3日,在Cell Reports上发表了题为“Deciphering the functional landscape of phosphosites with deep neural network”的研究成果。该研究从现有的具有功能注释信息的磷酸化位点数据出发,提出一种集成的深度神经网络模型FuncPhos-SEQ对人类蛋白质组水平上的磷酸化位点进行功能预测打分。该模型使用卷积神经网络通道提取磷酸化位点基序的序列信息,使用网络嵌入和深度神经网络通道提取蛋白质—蛋白质相互作用(PPI)网络信息,将这些特征联合输入到异构特征网络中对磷酸化位点的功能进行打分预测,并构建了FuncPhos-SEQ的在线服务器http://funcptm.jysw.suda.edu.cn/seq。通过结合体外和细胞生化实验发现NADK-S48/50磷酸化可激活其酶活性。此外,研究还发现了ERK1/2是磷酸化NADK-S48/50的主要激酶。
      研究团队通过检索PSP、EPSD、iPTMnet以及PTMD数据库收集了人类具有功能注释信息磷酸化位点的3335个蛋白质及135063个磷酸化位点。其中,带有功能注释的磷酸化位点有9769个。根据PSP数据库的注释,磷酸化位点的作用包括调控蛋白质分子功能、参与生物过程以及调控大分子间互作。通过多序列比对分析发现功能性磷酸化位点具有较高的保守性及一定的共演化特征;同时,具有功能性磷酸化位点的蛋白质在PPI网络中具有较高的连接度、介数等网络拓扑参数,表明PPI网络拓扑在磷酸化位点发挥功能中不可忽视的作用。基于功能性磷酸化位点的特征统计,研究团队提出了一种基于蛋白质序列和PPI信息的人类蛋白质组水平的磷酸化位点功能预测的深度学习框架FuncPhos-SEQ。 
      该模型由两个特征编码子网络(SeqNet和SPNet)和一个特征组合子网络(CoNet)组成。通过测试不同的序列特征和模型组合,在SeqNet中采用One_Hot、PSSM编码及保守性特征来构建磷酸化位点所处基序的特征图谱。使用CNN框架来自动提取二维矩阵的序列特征信息,在One_Hot通道增加最大池化层减小来自上层隐藏层的计算复杂度;在PSSM通道增加位置嵌入和自注意力机制,添加残基的绝对或相对位置信息来进一步捕捉蛋白质序列中残基之间的长距离依赖关系和全局信息。在SPNet中通过SDNE网络嵌入方法对PPI网络进行编码学习蛋白质之间的非线性关系,并通过DNN框架优化PPI网络特征, 为磷酸化位点功能提供蛋白质层面的上下文信息;最后在CoNet中使用FNN对输入的特征进行非线性变换,在网络最后一层使用Sigmoid激活函数用于预测磷酸化位点具有功能的概率。对于不平衡问题,对阴性数据集随机下采样11次,并在具有不同阳性与阴性数据比率的测试集上进行预测。结果表明FuncPhos-SEQ在不同的测试集上均能对磷酸化位点的功能(包括调控活性、调控互作及非特异功能)均能获得较好的预测效果。
      NADP+/NADPH(辅酶Ⅱ)参与磷酸戊糖代谢过程,为大分子生物合成和清除过量ROS提供还原力,支持细胞生长和存活,对快速增殖的癌细胞尤为重要。在人类细胞中,NADK是NADP+/NADPH合成的关键限速酶。有研究发现AKT通过磷酸化NADK-第44/46位丝氨酸激活NADK活性,促进肿瘤细胞NADP+/NADPH合成。
      研究团队通过FuncPhos-SEQ对NADK上的磷酸化位点进行打分,其N端loop区的S15、S44、S46、S48、S50、T62、S64和S103上的磷酸化位点作为功能位点排名较高。在293T细胞中过表达NADK,通过质谱鉴定出NADK-S48/50具有最强的磷酸化修饰信号。体外酶学实验发现NADK-S48/50D突变体比NADK-WT具有更强的酶活。这提示NADK-S48/50的磷酸化可以激活NADK活性。进一步通过质谱实验、蛋白免疫共沉淀实验、体外磷酸化实验和酶学实验鉴定出ERK1/2可以结合并磷酸化NADK第48/50位丝氨酸,并激活NADK活性。
      综上,研究团队构建的FuncPhos-SEQ模型在应用中只需要原始蛋白质序列作为输入,能够对人类蛋白质组层面的磷酸化位点进行功能预测。模型具有较高的计算效率,构建的在线服务方便生物学家访问。以NADK为例,使用FuncPhos-SEQ预测了NADK的功能磷酸化位点,并通过实验验证ERK1/2为磷酸化NADK-S48/50的激酶。Ras尤其是KRAS的突变是肿瘤中发生最广泛的激活型致癌突变,而MEK-ERK1/2和PI3K/AKT信号通路是KRas下游最重要的两条信号通路。研究结果发现,NADK-44/46/48/50磷酸化比NADK-44/46或NADK-48/50磷酸化更有效地增强了NADK活性,这表明AKT和ERK1/2激酶可以共同激活NADK活性。该研究丰富了我们对KRas调控NADK活性方式的认识,为靶向KRas信号通路提供了更多可能性。
      苏州大学梁中洁副研究员、上海药物所硕士生刘通海、博士后李琪及苏州大学硕士生张广玉为该论文的共同第一作者。上海药物所罗成研究员、苏州大学朱斐副教授为该论文的共同通讯作者。该研究获得国家重点研发计划、国家自然科学基金等项目的资助。
      全文链接: https://www.sciencedirect.com/science/article/pii/S2211124723010598

  • 原文来源:http://www.simm.ac.cn/web/xwzx/kydt/202309/t20230905_6871263.html
相关报告
  • 《Cell Reports | 上海药物所合作发现代谢物精胺调控表观遗传过程》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-07-20
    • 前列腺癌是男性癌症死亡的主要原因之一,死亡率仅次于肺癌。其中雄激素受体AR阳性前列腺肿瘤(AR positive prostate cancer, ARPC)为早期主要的前列腺肿瘤类型,靶向抑制AR的内分泌治疗是最主要的治疗手段,包括雄激素剥夺治疗、AR抑制剂治疗如恩杂鲁胺、阿帕鲁胺等。但是,随着内分泌治疗进行肿瘤会进展为致死性更高的去势抵抗性前列腺癌(Castration resistance prostate cancer, CRPC),对雄激素剥夺及AR抑制剂均显示出耐药性,其耐药机制中包括持续性AR剪接突变体(如Androgen receptor splice variant 7, AR-V7 )的表达等。AR-V7缺少C端雄激素配体结合域,不与雄激素结合即可入核激活下游信号通路,因而不受靶向雄激素配体结合区的AR抑制剂的调控,解决CRPC的耐药问题并对其进行有效治疗成为临床上亟待解决的问题。前列腺是一类重要的分泌性器官,多胺代谢是其中一类重要的代谢类型,多胺类小分子主要包括腐胺、亚精胺、精胺。精胺在前列腺中含量最高,高出其他组织器官约10-20倍,癌组织中的精胺含量显著低于癌旁组织,且肿瘤恶性程度越高精胺含量越低,有研究者提出可以将精胺的含量作为判断肿瘤恶性程度的“biomarker”。以上现象均提示了精胺在前列腺肿瘤进展中的重要动能,但目前针对其潜在药理作用及分子机制的研究仍尚属空白。   针对以上问题,中国科学院上海药物研究所罗成课题组联合中国科学院分子细胞科学卓越创新中心高栋课题组,于2023年7月14日,在Cell Reports 上发表了题为“Spermine Is a Natural Suppressor of AR Signaling in Castration-Resistant Prostate Cancer”的研究成果。联合团队发现了精胺能够通过靶向抑制蛋白质精氨酸甲基转移酶PRMT1,在基因组水平显著下调AR与靶基因的结合及AR靶基因的H3K27ac修饰水平,进而下调AR-FL、AR-V7信号通路,在去势抵抗性前列腺肿瘤CRPC中发挥抗肿瘤作用。   研究团队通过对多种前列腺肿瘤细胞或类器官进行精胺添加处理,结果显示精胺可以抑制肿瘤细胞生长,且对AR阳性CRPC生长抑制强度显著高于AR阴性CRPC。在同时表达AR-FL和AR-V7的CRPC细胞22RV1和VCAP中,精胺能够同时下调AR-FL和AR-V7的表达。RNA-seq结果显示,相比于恩杂鲁胺仅能够下调AR-FL信号通路,精胺能够同时下调AR-FL、AR-V7信号通路。AR是重要的转录因子,与靶基因的结合能够促进转录复合物的招募、增强染色质开放状态进而提高基因转录表达水平,AR ChIP-seq、H3K27ac ChIP-seq实验表明精胺能够在基因组水平显著下调AR与靶基因的结合及AR靶基因的H3K27ac修饰水平,相应地,ATAC-seq结果也显示精胺能够同时下调AR-FL、AR-V7信号通路基因的染色质开放状态。此外,在肿瘤细胞内敲减精胺氧化酶SMOX或过表达精胺合酶SMS使精胺在胞内累积,同样会下调AR信号通路基因的表达并抑制肿瘤细胞生长。   在对异常变化的代谢物的生物功能研究中,研究者发现代谢物通常会作用于细胞内不同的酶来调控基因表达和生长信号的传递,因此接下来团队探究了精胺是否作用于细胞内特定的靶点发挥其抗肿瘤作用。首先,基于药效团作用模型和配体结构相似性,通过靶标预测方法对其内源作用靶点进行预测,团队发现蛋白质精氨酸甲基转移酶(Protein arginine methyltransferases, PRMTs)可能是其潜在作用靶标。这也与前期研究报道PRMTs参与了前列腺肿瘤的发生发展相一致。PRMT1在前列腺肿瘤中的表达水平最高,进一步的同位素酶活实验及细胞内底物甲基化修饰检测实验均显示,在所有的PRMTs亚型中,精胺能够显著抑制PRMT1的酶活。一维核磁实验及分子对接实验进一步证明精胺可以直接结合PRMT1蛋白并占据其精氨酸底物口袋,为其对PRMT1的酶活抑制效应提供了结构基础。   在确证精胺与PRMT1的直接作用后,科研人员进一步探索精胺是否通过靶向PRMT1发挥抗肿瘤作用。对前列腺肿瘤组织芯片进行PRMT1免疫组化染色及TCGA数据库分析,发现PRMT1表达量随肿瘤恶性程度升高逐级增加,且与病人预后显著负相关,PRMT1基因表达水平与AR信号通路关键基因表达显著正相关。在肿瘤细胞中敲减PRMT1,细胞生长被显著抑制,AR-FL、AR-V7信号通路关键基因表达下调,敲减PRMT1后再进行精胺的处理,则精胺对AR信号通路的抑制效应被封阻。在CRPC移植瘤模型中,PRMT1敲减及精胺给药处理均能够显著抑制AR-FL、AR-V7信号通路及肿瘤生长,同样地,敲减PRMT1后再进行精胺给药处理,则精胺的抑制效应被封阻。至此,该研究进一步确证精胺通过靶向抑制PRMT1下调AR-FL、AR-V7信号通路从而抑制CRPC。   基于合作团队前期对蛋白质精氨酸甲基化酶的化学探针发现(J Med Chem. 2012;55:7978;J Med Chem. 2017;60:8888.;J Med Chem. 2017;60:6289)和针对肾细胞癌(Theranostics. 2021;11:5387)、肝癌(Theranostics. 2019;9:2606)的化学干预工作,团队运用自主开发的PRMT1的化学探针DCPT1061,同样能够在细胞和动物水平抑制CRPC。PRMT1的组蛋白底物H4R3me2a是一种经典的转录激活型修饰marker,H4R3me2a的ChIP-qPCR实验显示精胺与DCPT1061均能够显著下调AR基因启动子区的H4R3me2a修饰水平,进一步证明精胺通过抑制PRMT1酶活下调AR信号通路。DCPT1061与精胺均能够抑制AR与靶基因的结合并下调AR信号通路靶基因的H3K27ac水平,ATAC-seq实验也显示两者均能够抑制相关基因的染色质开放状态,且共同抑制的基因peaks数overlap在70%以上。因此,精胺作为PRMT1的内源性抑制小分子与PRMT1化学抑制剂发挥高度类似的生物功能,两者均能够抑制AR信号通路及肿瘤生长。   综上,该研究揭示了与前列腺肿瘤有高度临床相关性的代谢物精胺具有抗CRPC细胞增殖功能。表观修饰酶PRMT1是精胺的内源作用靶点,在前列腺肿瘤细胞中,精胺通过靶向PRMT1下调AR基因启动子区H4R3me2a修饰,抑制AR转录表达,并抑制AR靶基因与AR的结合、H3K27ac修饰以及AR-FL、AR-V7信号通路基因的染色质开放状态,从而下调AR-FL、AR-V7信号通路,抑制CRPC生长。精胺及PRMT1抑制在一定程度上克服了CRPC对AR抑制剂恩杂鲁胺等获得性耐药的局限。该研究提示,癌症进展过程中发生异常变化的生物活性分子或具有特定的生物功能,对其进行全面筛查分析其表观调控过程,探究这些异常变化的代谢物质是否会干预肿瘤进展,有助于深入探究肿瘤发生发展的内源生理机制,或可以为肿瘤的有效治疗提供更全面的干预手段。   上海药物所杭高院罗成工作室博士后李晓、分子细胞卓越中心博士后李飞和浙江理工大学叶飞教授为该论文的共同第一作者。上海药物所罗成研究员、张元元副研究员和中国科学院分子细胞卓越中心高栋研究员为该论文的共同通讯作者,该研究还得到上海药物所周虎研究员的支持,并获得国家重点研发计划、国家自然科学基金、杭州高等研究院研究基金等项目的资助。   全文链接:https://www.cell.com/cell-reports/fulltext/S2211-1247(23)00809-4
  • 《Cell Res | 上海药物所合作发现科学界长期寻找的内质网阴离子通道》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-05-09
    •  内质网是细胞内重要的储存钙离子的细胞器,其通过膜上分布的三磷酸肌醇受体(IP3R)和兰尼碱受体(RyR)通道释放钙离子,并通过SERCA质子泵回收钙离子。钙离子跨内质网膜的流动带来电势的变化,需要其他离子进行电荷和渗透压的平衡。目前研究已证实内质网钾离子通道TRIC的存在,但一价的钾离子无法同时抵消二价钙离子释放产生的电势差和渗透压差,科学家因此推测内质网膜上必定同时存在一个阴离子通道。但该通道的神秘身份一直未被鉴定。   2023年5月4日,清华大学医学院贾怡昌、中国科学院上海药物所高召兵与北医三院樊东升教授团队合作在Cell Research在线发表论文“Disruption of ER ion homeostasis maintained by an ER anion channel contributes to ALS-like pathologies”,首次证实了CLCC1是内质网定位的氯离子通道,具有协助内质网钙离子释放和调节内质网的离子稳态的生理功能;其功能缺失会破坏内质网的离子稳态,引发内质网胁迫并对肌萎缩侧索硬化症(ALS)的病理有贡献。该项研究揭开了科学界长期寻找的内质网氯离子通道神秘面纱。Cell Reseaerch同期发表评论性文章“Identity revealed for a long-sought ER anion channel”,其通讯作者迈阿密大学Laura Bianchi指出,该项研究发现了科学界长期以来寻找的内质网氯离子通道,并首次揭示其与肌萎缩侧索硬化症密切相关,可能是一个潜在的药物靶点。   从全长序列看,CLCC1与已知Clic通道蛋白序列并无相似性,根据其内质网定位特征和电生理数据,研究人员建议将该基因重新命名为ER Anion Channel 1 (ERAC1)。为了研究CLCC1是否参与调节内质网的离子稳态,研究团队首先制备了内质网定位的比率型(ratiometric)氯离子探针和比率型钾离子探针。结合流式细胞术对293FT细胞进行检测发现,敲低CLCC1导致静息态[Cl-]ER和[K+]ER升高。透射电镜结果表明,不同于对照细胞中出现的细长且结合核糖体的内质网结构,CLCC1敲低的细胞出现更多的短棒状内质网,且内质网的平均宽度也会增加。因此,CLCC1维持着内质网中氯离子浓度和钾离子浓度,以及内质网的形态。   在接下来的实验中,研究团队发现CLCC1功能缺失导致 [Ca2+]ER下降, 通过大量实验证明CLCC1对内质网钙离子释放是必要的。紧接着,研究团队发现磷脂酰肌醇PI(4,5)P2可以增加CLCC1的电导和开放概率,并揭示PIP2关键结合位点为K298。突变K298A降低通道功能及PIP2敏感性,而K298A敲入小鼠不仅在小脑出现内质网胁迫的信号和内质网膨胀的表型,而且脊髓中ChAT+运动神经元数量减少,并出现后腿无力的表型。在一个新的中国ALS病人队列中,研究团队发现了包括W267R和S263R在内的8个罕见突变。S263R和W267R经过单通道电生理,钙成像,基因敲入(knock-in)小鼠的病理学检测等一系列实验,证实为功能缺失的突变。K298A、S263R和W267R这三个knock-in小鼠品系内源CLCC1蛋白因更多的泛素化依赖的降解而出现表达量下降的特征,显示表型的严重程度依赖于CLCC1蛋白的表达量。在脊髓ChAT+运动神经元中条件性敲除CLCC1基因,小鼠出现内质网胁迫,泛素化蛋白聚集,TDP-43蛋白出核,运动神经元数量减少,和出生后一个月内快速死亡的表型。以上结果首次将CLCC1的突变与ALS联系起来,并暗示CLCC1可能是一个新的ALS致病基因。考虑到CLCC1同源多聚体的形成以及显性负效应(dominant negative effect)的存在,通过补充野生型CLCC1蛋白或者激活剩余的CLCC1的通道活性来治疗相应的疾病是一个可能的治疗手段。   本研究在分子水平首次证实了CLCC1独立形成阴离子通道;在细胞层面提出阴离子通道调节内质网离子稳态的新假说:内质网腔的钙离子经过IP3R或者RyR通道释放到细胞质后,解除了对CLCC1的抑制,升高了内质网细胞质一侧的电势,驱动了氯离子经由CLCC1进入细胞质,同时TRIC释放钾离子进入内质网腔,从而达到电荷与渗透压的持续平衡。当CLCC1的功能缺失时,需要两倍于钙离子剂量的钾离子进入内质网来中和电势的短期变化,这升高了内质网腔的渗透压,导致内质网膨胀和内质网钙离子浓度的下降,激活了UPR;本研究使用多个CLCC1突变小鼠模型揭示了CLCC1表达剂量依赖的ALS发病新机制,支持了环境因素作用于遗传因素从而引起ALS的双重打击(two-hit)理论,为临床ALS疾病的治疗提供了新靶标和新思路。   清华大学生科院/生命科学联合中心毕业生郭亮博士、上海药物所毛琼蕾博士和北京大学第三医院何及博士为论文的共同第一作者。清华大学医学院/生命科学联合中心贾怡昌教授、上海药物所高召兵研究员和北医三院樊东升教授为共同通讯作者。清华大学药学院肖百龙教授和刘晓玲博士,医学院朴学娇博士、罗莉博士、宋强博士,生科院本科生于涵之,上海药物所及浙江城市学院联合培养硕士生郝晓旭均有重要贡献。本工作获得了国家自然科学基金、北大-清华生命科学联合中心、IDG/麦戈文研究所和北京市科委等支持。   原文链接:https://doi.org/10.1038/s41422-023-00798-z