《【Energy & Environmental Science】AI模型延长电动汽车电池寿命和安全性》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2025-08-27
  • 研究背景

    乌普萨拉大学?ngstr?m先进电池中心的研究团队开发了一种新型AI模型,显著提升了电动汽车(EV)电池老化的预测能力,有望优化安全性与使用寿命。电池退化是阻碍EV普及的关键问题之一,据估算,电池成本占整车40%,其过早失效会推高用户成本并影响市场信心。国际能源署(IEA)预测,到2030年EV将占全球新车销量的60%以上,锂离子电池需求占比超85%。


    研究方法与突破

    研究人员Wendi Guo与Daniel Brandell教授通过AI分析短时充电数据,结合数字孪生框架,将电极厚度、锂离子浓度等设计参数与实际老化行为关联。该模型仅需80次完整充放电循环(不足电池寿命的10%)即可提供早期预警,预测误差较传统模型降低69%。相关成果发表于2025年8月的《能源与环境科学》(Energy & Environmental Science),并与丹麦奥尔堡大学合作验证。


    应用价值

    行业效益:无需车企敏感数据即可预测电池健康状态(SOH),减少对用户隐私和商业机密的依赖。

    安全与可持续性:识别锂沉积等危险反应,优化快充设计;延长电池寿命可降低对钴、镍等稀缺资源的需求,减少电子废弃物。

    车网协同(V2G):精准预测双向充放电下的电池退化,支持电动汽车作为电网储能单元。


  • 原文来源:https://www.environmentenergyleader.com/stories/ai-model-extends-life-and-safety-of-ev-batteries,89024
相关报告
  • 《实时测量方法延长电池寿命并提高电池安全性》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-08-04
    • 强大且安全的电池是电动汽车成功的关键要素。因此,测量电池的容量和状态至关重要。阻抗谱法是获取更多信息的测量方法。阻抗本身无法直接测量,而是通过电流和电压之间的关系计算得出。阻抗提供有关电池荷电状态 (SoC) 的信息,并有助于推断其健康状况(SoH,即电池内部状况,包括正极、负极和电解质的位置)或其安全状态。 收集所有必要数据需要耗时的测量和分析方法。此外,迄今为止,阻抗测量只能在静止状态下进行。通常需要长达 20 分钟才能获得表征电池所需的数据。 在 Fabio La Mantia 的领导下,弗劳恩霍夫 IFAM 的研究人员进一步开发了这种方法。现在,动态阻抗谱技术首次能够计算电池在运行过程中的状态测量值,并实时提供数据。 通过这种方式获取的信息远不止简单的充电容量或剩余工作时间数据。它能够提供电池内部状态的详细、准确和深入描述。这也能让我们预测单个电池的潜在寿命。 虽然现有的电池充电状态显示器(例如,集成在电动汽车的车载电子设备中)也会在使用过程中持续进行测量,但它们提供的信息较少,响应速度较慢,而且不太准确。 “首先,动态阻抗谱技术为优化电池管理开辟了新的可能性,从而延长电池的使用寿命。它也为这些电池在安全关键型应用领域的应用铺平了道路。”该项目负责人Hermann Pleteit解释道。 高分辨率测量方法和直接分析 在这种创新方法中,放电或充电电流与多频测试信号叠加。不同的频率使得能够推断电池内部某些组件或过程的状态。电流和电压的响应信号每秒测量高达一百万次。所有来自高分辨率测量方法的数据都会流入同时运行的数据处理系统。软件程序利用这些信息计算阻抗值的演变,然后推断相关电池单元的状态。 为了在高分辨率测量产生海量数据的情况下实时获得结果,弗劳恩霍夫的研究人员设计了另一个巧妙的技巧。“我们开发了算法,可以在分析之前显著减少数据量,同时又不丢失相关信息,”Pleteit 说道。与这些进展相一致,通过阻抗谱法实时控制电池状态的各个方面具有显著的优势。 快速关闭过热的电池 例如,电池管理系统可以利用阻抗数据,在行驶过程中立即记录某个电池单元局部过热的情况。然后,系统会直接关闭该电池单元或降低功率。这消除了对传统温度传感器的需求,因为这些传感器通常放置在电池单元外部,因此会延迟记录热问题。到那时,通常为时已晚,无法防止电池单元受损。 电动汽车充电器也有一些优势。例如,这项技术可以用来决定是选择超快速充电还是较慢但能减少电池磨损的充电方式。在休息站的短暂停留期间,电池管理系统会快速为电池充电,同时确保不会出现危险的温度峰值,并且内部组件不会承受过度压力。如果车辆插入充电器几个小时,管理系统会以较慢的速度为电池充电,以减少磨损并延长电池使用寿命。 可再生能源和航空应用 风能或光伏等可再生能源的供应商需要通过储能来补偿电力生产的波动,而借助弗劳恩霍夫技术,他们可以获得稳定的电池模块系统,并可随时进行控制。 实时监控电池状态甚至有望在未来安全关键场景中实现应用。“例如,这类系统可以用于环保型电动飞机。这个市场目前尚处于起步阶段。航运业也对这项技术表现出了浓厚的兴趣,”Pleteit 说道。 阻抗谱法不仅适用于目前常见的锂离子电池,还可以应用于固态电池、钠离子电池、锂硫电池,或任何其他未来技术。
  • 《【Journal of Energy Storage】准固态电池集电动汽车和设备的安全性和高效性于一体》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2025-01-14
    • 日本同志社大学的研究人员开发了一种新型的准固态锂离子电池(LIB),该电池具有不可燃的固体和液体电解质。与传统的锂离子电池相比,该电池具有更高的离子电导率、更好的循环性能和更好的安全性。 技术进步促使电动设备和电动汽车得到广泛应用。 这些创新不仅方便,而且环保,为污染环境的燃料驱动机器提供了替代品。 锂离子电池(LIB)广泛应用于电器和汽车。 商用锂离子电池由有机电解质溶液组成,这被认为是使其高效节能所不可或缺的。 然而,随着市场需求的不断增长,确保安全成为一个令人担忧的问题,而且可能难以实现。 虽然固态电池有助于缓解安全问题,但固态电极与电解液之间的界面不利于锂离子的最佳传输。 此外,固体电极的膨胀和收缩会破坏连接界面,阻碍离子传输。 因此,有必要开发具有稳定接合界面的高效固态电池,以提高其安全性、实用性和性能。 为了克服这些挑战,日本的一个研究小组开发出了一种不易燃的准固态 LIB,它可以克服传统电池的局限性。 这项研究由日本同志社大学和 TDK 公司的 Ryosuke Kido、同志社大学的 Minoru Inaba 教授和 Takayuki Doi 教授以及 TDK 公司的 Atsushi Sano 领导,他们的研究成果发表在 Journal of Energy Storage上。 在进一步介绍他们的工作时,论文的主要作者 Kido 先生说:"提高正负极活性材料的容量以实现更高的能量密度,会降低循环性能和安全性。 我们开发的阻燃准固态电池结合了液态电解质和固态电解质,为具有高能量密度的全固态电池提供了更安全、更耐用的替代品。"新电池设计包括硅(Si)负极和镍钴锰酸锂(LiNi0.8Co0.1Mn0.1O2,NCM811)正极,它们被认为是锂离子电池的下一代材料。 这些电极由小原公司生产的固态锂离子导电玻璃陶瓷片(LICGC)隔开。 为了提高兼容性和性能,研究人员为每个电极量身定制了不易燃、接近饱和的电解质溶液。 这些溶液使用磷酸三(2,2,2-三氟乙基)酯和 2,2,2-三氟乙基碳酸甲酯,它们与电极和固体电解质界面兼容。 研究人员利用电化学阻抗谱、充放电测试和加速速率量热法(ARC)对准固态 LIB 的热稳定性和电化学性能进行了评估。 值得注意的是,该电池具有充放电容量高、循环性能好和内阻变化小的特点。 此外,ARC 测试表明,Si-LICGC-NCM811 结构与相应的电解质溶液具有更好的热稳定性,即使在 150°C 左右的高温范围内,与副反应相关的发热量也非常低。 总之,新开发的 LIB 有潜力促进高效、更安全的下一代电动汽车和无人机等无绳电器的开发。 它的广泛应用不仅能为用户带来更多便利,还能促进经济的可持续增长。 Kido 先生最后谈到了他们工作的长远意义,他说:"随着全球朝着碳中和的方向发展,电动汽车近年来备受关注。 我们研究的准固态电池有可能改善液态锂电池的寿命,提高能量密度,同时保持全固态电池的安全性。"这项研究标志着向开发兼顾安全性、效率和环境可持续性的下一代储能解决方案迈出了一步。 原文链接: Ryosuke Kido et al, Highly safe quasi-solid-state lithium ion batteries with two kinds of nearly saturated and non-flammable electrolyte solutions, Journal of Energy Storage (2024). DOI: 10.1016/j.est.2024.114115