柔性电子器件应用前景广阔,市场潜力巨大,因此受到了人们越来越多的关注。而该类型电子器件能否在未来市场取得成功关键在于是否有高性能的柔性/可伸缩电池给予充足的供能。斯坦福Yi Cui教授研究团队设计开发了全球首个可伸缩的锂金属负极,基于该电极制备了新型的可伸缩锂金属电池,展现出良好的机械性能和化学稳定性,对柔性电子器件的发展具有重要的推动作用。
研究人员首先将直径150 μm铜丝卷成直径500 μm一维铜弹簧,随后将铜弹簧卷绕成类似“蚊香”的二维结构弹簧,进一步将聚(乙烯-异丁烯-苯乙烯)橡胶(SEBS)的溶液注入到二维铜弹簧的螺纹缝隙中,等溶剂挥发干后即可得到二维“金属-橡胶”复合体,接着在该复合体表面电沉积一层锂金属薄膜,形成“锂金属-橡胶”一体化电极结构。由于弹簧螺纹缝隙被聚合物SEBS填充,使得整个二维的“蚊香”结构的铜弹簧被分隔成众多的金属微区。一方面,铜线被做成弹簧,保证了其具有良好的弹性(可伸缩性)。这样,在电极受到外力而拉伸时,铜弹簧可以变形,填充在弹簧间隙中的橡胶可以吸收机械应变能量,从而保护锂金属微区免受其影响,也即制备出了具备良好弹性的锂金属负极。随后研究人员测试了基于弹性锂金属负极和传统非弹性的锂金属负极的电池性能,在1 mA cm–2放电电流密度下,基于不可伸缩的锂金属负极电池经过45次循环后,放电容量开始明显衰减,且库伦效率下滑至95%,而将放电电流密度翻倍至2 mA cm–2后,电池经过14次循环后库伦效率便下降到90%以下;相反,可伸缩的锂金属负极电池经过167循环后电池容量基本没有衰减,且库伦效率高达97.5%;即使进一步提高放电电流至2 mA cm–2,电池仍可循环近50次,库伦效率达96%,展现出了优异的循环稳定性。进一步,研究人员系统研究了形变对锂金属电极的影响。在弹性锂负极发生60%的应变条件下,得益于铜弹簧和橡胶弹性,电极基本没有形变,因此电极的导电性几乎不受影响,形变前后电极的电阻基本一致。接着,测试了形变对电池性能影响,即在对电池进行60%伸缩形变后进行100次的恒电流充放电循环测试,结果显示电池在经过100次循环后仍可保持初始容量的90%,且库伦效率为90%左右,展现出了优秀的机械柔韧性和循环稳定性。
该项研究设计制备全球首个可伸缩锂金属电池,展现出优异的机械柔韧性和化学稳定性,为设计开发高效的柔性电池提供了新思路,对柔性电子器件的发展有良好的推动作用。相关研究成果发表在《Joule》。