《苏州医工所在高灵敏增强拉曼传感技术方面取得研究进展》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-05-10
  •  高灵敏微量气体传感在环境污染研究、人体挥发性有机物(VOCs)检测中具有重要现实意义。迄今为止,已有多种分析技术被用于气体检测,但大多存在成本高、操作复杂、分析过程耗时等缺点。表面增强拉曼散射(SERS)作为一种有力的痕量分子检测工具,可利用基底的表面等离子体共振和电荷转移效应大幅增强目标分子的拉曼散射信号,具有高灵敏、简单、快捷、无损和特异指纹识别的特点,在气体传感领域具有突出的优势。

      近期,中国科学院苏州医工所张志强研究员与孙姣姣博士研究生开发了一种具有超高灵敏性的三维玫瑰花枝状SERS基底(BigAuNP/Au/ZnO/P)。在本研究中,科研人员以化学生长与微纳加工相结合的方式在聚偏二氟乙烯(PVDF)膜上制备了纳米氧化锌(ZnO)-金(Au)三维异质结构。其增强原理在于相邻纳米棒表面的金纳米颗粒(AuNPs)、同一纳米棒表面的相邻AuNPs、金层与AuNPs的结合点三处“热点”区域共同提高了电磁增强效应,Au和ZnO之间的电荷转移产生高密度电荷,形成内部电场,激发了ZnO纳米棒的化学增强效应。

      该SERS基底对对巯基苯甲酸(p-MBA)分子的检测限为10-13 M,其增强因子高达2.27×107,并具有良好的均一性和可重复性(RSD < 4%)。此外,PVDF膜具有多孔特性,可采用过滤式检测程序提高目标分析物与SERS“热点”的碰撞效率,有利于气体分子的高效富集。

      在该工作中,科研人员以腐胺和尸胺两种挥发性有机气体为例,验证了该三维柔性SERS基底在气体传感中的检测性能。通过在SERS基底上修饰p-MBA传感单分子层,利用酰胺反应选择性地捕获腐胺和尸胺,实现了低浓度气体分子的高灵敏定量检测(腐胺检测限:1.26×10-9 M,尸胺检测限:2.5×10-9 M),比同类研究报道的检出限高出2-3个数量级,证明了该SERS传感器在实际气体传感中的应用潜力。

      鉴于该三维柔性SERS基底的多孔特性和优异的增强性能,将其与微流体装置和便携式拉曼光谱仪集成,搭建SERS快速检测系统,有望实现气溶胶中细菌、病毒和污染物的高效捕获与富集,充分发挥该三维基底在气溶胶的高灵敏检测领域的技术优势。

      相关研究成果以“Ultrasensitive SERS analysis of liquid and gaseous putrescine and cadaverine by a 3D-rosettelike nanostructure-decorated flexible porous substrate”为题发表于SCI一区分析类顶级期刊Analytical Chemistry(IF = 6.986)。孙姣姣博士研究生为第一作者,张志强研究员、尹焕才研究员和宋一之研究员为共同通讯作者。该研究获得国家自然科学基金委、江苏省重点研发产业前瞻项目、中国科学院科研仪器装备研制项目等项目的经费支持。

      论文链接:https://pubs.acs.org/doi/abs/10.1021/acs.analchem.1c05013

  • 原文来源:http://www.sibet.cas.cn/kxyj2020/kyjz_169572/202204/t20220427_6439770.html
相关报告
  • 《苏州纳米所在彩色基底用于半导体SERS方面取得研究进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-02-07
    •   表面增强拉曼散射(SERS)是一种强大的痕量分析技术,具有单分子检测的灵敏度,并提供分子指纹信息,在痕量分析、界面表征等领域具有巨大的应用价值,其中基底材料是SERS研究的核心。近年来,半导体材料由于低成本、高选择性、结构可调、生物相容性好等特点,成为SERS基底研究的一个新兴方向。然而,相比于传统的贵金属SERS材料,半导体SERS在灵敏度上仍有数量级的差距,其中一个重要原因是半导体SERS材料在对Raman激光的利用存在局限。   针对这一问题,中国科学院苏州纳米所赵志刚研究员团队开创性地提出“彩色基底”新概念,实现基底材料对Raman入射激光利用的最大化。基于半导体材料构筑法布里-珀罗(F-P)光学谐振腔(一种由金属/介质薄膜构成的简单光学结构),通过调节介质层厚度实现吸收峰在可见光区的大范围移动,从而与不同波长(如532、633和785 nm)的入射激光灵活匹配,提高半导体SERS检测的灵敏度。  以典型WO3-x/WO3/W(简称WO/W)薄膜结构为例,通过改变WO3介质层厚度获得的红色样品(R-WO/W)及绿色样品(G-WO/W),分别对不同的入射波长(532、633nm)下实现了近乎完美的吸收(超过90%),同时观察到SERS增强性能对基底颜色具有强烈依赖性的有趣现象。   这一系列样品表层的化学组成相同(均为WO3-x),可以认为具有相同的能带结构,提供相同的电荷转移(CT)路径,因此SERS增强幅度的差异来自其下层的F-P谐振腔结构。在WO3-x/WO3/W构成的F-P结构中,入射激光由于干涉效应在空气/WO3-x、WO3-x/WO3和WO3/W界面间发生多次反射;一方面增强了表层WO3-x对入射光子的吸收,促进体系电荷转移共振;另一方面增强了表面电磁场,进一步放大探针分子SERS信号。   基于上述原理,研究团队在SERS检测常用的商品硅片上(SiO2/Si)发现了类似现象,只是长期以来被人们所忽略。数值模拟结果表明,商品硅片由于表面覆盖不同厚度的SiO2,可与Si构成F-P谐振腔结构,从而具有不同的颜色,作为基材负载半导体SERS材料时同样会显著改变其SERS性能。作为验证,研究团队在SiO2/Si构成的F-P型结构上旋涂SnS2胶体颗粒(一种已报道的SERS活性半导体)获得SnS2/SiO2/Si薄膜材料,对SARS-CoV-2S蛋白的SERS检出限可达10-16 M,灵敏度比SnS2材料单独作为SERS基底提升两个数量级。   上述结果表明,这种简单的彩色基底可与现有的半导体SERS材料配合使用,根据激光波长选择合适的颜色,旋涂上半导体SERS材料,即可显著提升半导体材料的SERS灵敏度,具有相当广泛的应用价值。   以上工作以Semiconductor SERS on Colourful Substrates with Fabry–Pérot Cavities为题发表于Angewandte Chemie。中国科学院苏州纳米所硕士生李菲钒是本文第一作者,丛杉研究员、赵志刚研究员是本文通讯作者。研究工作受到国家重点研发计划、国家自然科学基金、苏州市产业前瞻与关键核心技术等项目资助。
  • 《苏州医工所缪鹏课题组在电化学/荧光双模传感技术方面取得进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-07-20
    •  电化学传感器是利用待测物所引发的电信号变化与浓度或其他物理量之间存在的相关性关系进而定性或定量分析的一种方法。荧光传感器则是通过将待测物与识别基团特异性结合的信息传递给荧光基团,引发荧光强度或发射波长的改变实现定性或定量检测的方法。这两种技术所涉及的信号源及构建方法往往差异较大。在同一体系中采用两种技术进行同步检测不仅能够有效提高检测准确性,还能够降低所获取信号受到背景信号、仪器波动等因素的影响,在基础研究、环境检测、临床检验等领域具有广泛的应用前景。   近期,苏州医工所缪鹏研究员课题组发展了基于“手拉手”式DNA纳米结构组装的设计,并基于亚甲基蓝/红色荧光碳量子点开发了一种新型的针对循环肿瘤DNA的电化学/荧光双模传感器。首先将发卡探针A固定于电极表面;与目标核酸反应后,游离的单链区域可用于打开发卡探针B;同理,发卡探针C可通过类似的反应结合为Y型结构并置换出目标核酸序列用于循环反应;相邻结构间的单链可以进一步结合形成大型组装体。反应的可行性可通过理论计算与凝胶电泳成像证实(图1);同时,所合成的碳量子点抗干扰性强,在生理环境下能够保持高度的荧光稳定性(图2)。通过分析相应发夹探针末端标记的电化学与荧光信号源,能够有效地完成双模探测。通过一系列的条件优化与定量测试,建立了荧光强度、电化学强度与目标核酸浓度的线性校准曲线,能够实现6个数量级的较宽线性范围,同时也可通过荧光成像方便快捷地区分目标核酸的含量(图3)。本工作中发展的双模传感器设计新颖,具有较高的灵敏度,可扩展性强,能够为核酸分析及临床诊断提供有力的工具。   本工作得到了苏州市基础研究试点项目(SJC2021016)的资助,结果已发表Chemical Engineering Journal, 2022, 450, 138069 (IF=16.744)   论文链接: https://www.sciencedirect.com/science/article/abs/pii/S1385894722035550